
Paper ID #34473

A Hands-on Learning Approach to Introducing Computer Organization and
Architecture to Early-college Students

Dr. D. Cenk Erdil, Sacred Heart University

Dr. Erdil has joined Sacred Heart University’s School of Computer Science & Engineering in Fall 2017.
Prior to SHU, he has held academic positions at Marist College, Columbia University, and Istanbul Bilgi
University. His research interests include using Cloud Computing as Artificial Intelligence Infrastructures,
Cyber-Physical Systems and Internet-of-Things, Teaching coding to P-12 students, and Health Informat-
ics. He is the author of numerous peer-reviewed journal and conference publications in grid and cloud
computing. In the past, he designed and implemented a cloud-based public health informatics infrastruc-
ture. He is a founding member of the School of Engineering at Istanbul Bilgi University, and was the
chair of its Computer Engineering Department. He also designed an adaptive resource-matching frame-
work for large-scale, autonomous grid computing environments, using epidemic dissemination protocols.
He is the founding director of Engineers Without Borders International, Turkey branch. At the industry,
Dr. Erdil has worked in management and software engineering roles for more than a decade at various
organizations, including Fidelity National Information Services (FIS), and Turkish Airlines. He is a se-
nior member of the Association for Computing Machinery (ACM), and a senior member of Institute for
Electrical and Electronics Engineers (IEEE); and a member of Engineers Without Borders International
(EWB-I), American Society for Engineering Education (ASEE), and Association for Information Systems
(AIS).

Dr. Kevin N. Bowlyn, Sacred Heart University

Kevin N. Bowlyn is an Assistant Professor at Sacred Heart University. His current research interest is
focused on a more efficient method for computing a fast Fourier transform (FFT) algorithm. His re-
search interests are in digital hardware design, digital signal processing, low area-power circuit designs,
embedded systems, and computer architecture.

Mr. Joshua Randall, Sacred Heart University

c©American Society for Engineering Education, 2021



A Hands-On Learning Approach to Introducing

Computer Organization and Architecture to Early

College Students

D. Cenk Erdil, Kevin N. Bowlyn, and Joshua A. Randall
School of Computer Science & Engineering

Sacred Heart University
Fairfield, CT

Abstract

We present a design and implementation of a lower-level computer
organization and architecture course with hands-on components pre-
sented as blended-learning modules that are collectively designed to
introduce core computer design concepts primarily to college students
studying applied science and technology programs, such as computer
science and information technology.

With a particular focus on single-board computers and associated
hardware modules, students are introduced to core computer compo-
nents early in their coursework, and encouraged to study advanced
engineering concepts as higher elective courses to help them better
understand the underlying design of hardware modules. Hands-on ac-
tivities and problem-based modules are re-designed with the flexibility
to be applied in settings that involve all in-classroom cohorts, as well
as courses offered in synchronous and/or asynchronous online learning
methodologies, which is becoming of particular importance to educa-
tors under COVID-19 implications.

First cohort of this newly redesigned course was offered in Fall 2019,
when, in the middle of the semester, all instructional methodology
had to be switched to fully-online after health measures in October-
November 2019. Second and third cohorts of the course are currently
being offered in 2020-2021 academic year. Anonymous research data
collected with these three cohorts of the revised course show that re-
designed of the course improved overall course reviews, while meeting
educational goals to introduce students to core knowledge areas in
computer organization and architecture.

1



1 Introduction

This article describes details of design and implementation of a lower-level
(core-Tier1) computer organization and architecture course with online hands-
on components as common learning environments. We use the following
pedagogical approaches for the revised course content: lead-learner, blended
course delivery, flipped classroom, and project-based learning.

Online hands-on component of the course has been focused on using a
single-board computer, and associated hardware with the aim to provide
students contemporary skills in implementing computer orientation and ar-
chitecture projects with related software components. We have collected
research data after the first two cohorts (in the same academic year, two
separate sections of the same course).

While we continue to collect research data in subsequent cohorts in (cur-
rently) Spring 2021 and (upcoming) Fall 2021 sections, our early student
responses show that new design has improved overall course reviews, while
achieving curriculum guideline goals for common computer organization and
architecture course design. In addition, course materials that include core
knowledge areas (KAs) have been kept intact, and student feedback shows
that they understand each KA at comparable levels to classical computer
organization and architecture course content.

2 Method

In typical computer organization and/or computer architecture courses,
knowledge areas are composed of the following concepts [1]:

• Digital logic

• Digital systems

• Machine level representation of data

• Assembly level machine organization

• Memory system organization

• Memory architecture

• Hardware interfacing

• Component communication

2



• Functional organization (optional)

• Multiprocessing (optional)

• Alternative architectures (optional)

• Performance enhancements (optional)

Modules of our hands-on components are based on the following curricu-
lar guidelines: lead-learner, blended course delivery, flipped classroom, and
project-based learning. We have used the Englander’s Information Technol-
ogy Approach of the Architecture of Computer Hardware, Systems Software,
and Networking, 5th Edition textbook [3]. The following paragraphs explain
details of implementation of each curricular guideline in our course design.

In lead-learner, our primary goal is to provide a facilitator role as the
person responsible for delivery of the course, and we facilitate an active
discussion for each week, and strive to initiate a co-learning environment.
There are short time periods where the instructor has to switch back to clas-
sical teacher role, go over the presentation slides for a short period of time
(typically less than 15 minutes), and then changes the methodology back to
lead-learner, rephrasing the understanding of what that particular module
has presented to a student’s view. This approach provides students oppor-
tunities to ask more questions, and increase the overall engagement in class.
This methodology has become especially important with changing delivery
of course content with multiple modalities under COVID-19 implications,
in particular to handle synchronous and asynchronous students within the
same cohort.

Blended course methodology allowed us to redesign the hands-on section
of the course, with complementary practical applications to the theoreti-
cal part, and provide students hands-on skills in working with single-board
computers, together with sensors and other digital components, and asso-
ciated programming activities based on microcomputer platforms such as
Arduinos [2]. These alternating hands-on components also helped us flip
the class delivery environment from technical to discussion to other modal-
ities, and kept students engaged in overall discussion of fundamentals of
computer organization and architecture.

In addition, a project-based component helped students to design and
implement a basic computer organization idea, using the fundamental skills
they have learned in class. Almost all of the students being in their sopho-
more year, stated that this class made them excited about their major choice,
and indirectly contributed to increasing levels of retention, especially in

3



early college experiences in computer science and engineering classes. Fig-
ure 1 shows demographics of age distribution and class standing in Fall 2019
cohort.

Figure 2 shows distribution of undergraduate majors within the col-
lege, with majority of students either already declared or interested in a
technology-focused undergraduate degree, including Computer Science, In-
formation Technology, Game Design, Computer Engineering, Cybersecurity,
and Electrical Engineering. This course has been an optional course for
Computer Engineering and Electrical Engineering students, as those majors
have several other computer organization and architecture related courses
in their core curricula, respectively.

Figure 1: Demographics of age distribution and class standing.

3 Course Design

In the past, this course has been offered at our university by the 40+ year-old
department of computer science, which started a major expansion in 2017,
and opened three new programs and split its computer science program into
three separate undergraduate programs. As part of this expansion, this
course has been re-designed, with the following primary goals in mind:

• To re-design major courses in computer science programs as school
initiated ABET accreditation process in 2016,

• To align with newly offered undergraduate programs in computer sci-
ence and engineering within the school,

• To introduce project-based components to a sophomore-level computer
organization and architecture class,

4



Figure 2: Program of study by percentages (N=42). One student in Fall
2019 cohort is studying two programs: Computer Science and Cybersecurity.
WCBT Undecided are those undergraduate students, who have not decided
on their major studies yet.

• To increase student retention in early college major programs in STEM,

• To provide a general overview of the fundamentals of computer archi-
tecture to a wide variety of students from different majors.

The course learning materials are based on Irv Englanger’s ”The Ar-
chitecture of Computer Hardware, Systems Software and Networking - An
Information Technology Approach” textbook.

The main course objectives are to get students equipped with the fol-
lowing goals:

• Understand the basics of computer hardware and how software inter-
acts with computer hardware,

• Know the organization of the central processing unit (CPU) and mem-
ory hierarchy,

• Use critical thinking to make informed decisions in the selection of
hardware,

• Learn and demonstrate how program performance is affected by pro-
cessor cache sizes,

• Understand how the architecture affects program performance,

5



• Demonstrate how instructions can be implemented in a chip,

• Learn how to use a low-level assembly language to manipulate registers
on a computer architecture performing a specific operation with data,

• Learn how computer organization influences high-level languages, and
vice versa.

Following student learning expectations and outcomes has helped us de-
sign weekly course activities:

• Identify and analyze core computer organization problems,

• Explore principles of computer architecture,

• Create a program in a low-level assembly language that works with
data that fit and exceed processor cache sizes, and measure the per-
formance impacts of doing so,

• Write a simple program in a low-level assembly language to implement
a high level program segment,

• Using an Arduino board, control a sensor via software,

• Use Linux operating system and embedded boards to implement basic
computer organization artifacts,

• Design a physical computer-based project and implement it.

4 Opinion Survey and Results

In this section we provide results of the opinion survey we have asked our
students to respond to at the end of the course. As the results of first-
time offering of this course, this course was offered as two cohorts (in two
separate sections) with a total of 42 students (N=42). Students have been
asked to fill out the survey anonymously, with all the responses provided
between 4/15/2020 and 4/27/2020. These responses have been provided
together with university standard course evaluation forms (which are also
anonymous to instructors), and data have been collected before students
have learned their final grades for this course.

Opinion surveys have started with a set of general questions about the
course, as Figure 3 shows, and focused on overall experiences in the course,
as shown in Figures 4, and 5 show.

6



Figure 3: Student responses to the general questions about the course. (a)
The level of material covered in the class was suitable for the topic. (b) I was
able to follow the material without being too overwhelmed. (c) The course
materials contributed to my learning. (d) The objectives of the course were
clear. (e) The instructor raised questions or problems that encouraged me
to think critically. (f) My interest in the subject matter was enhanced by
the instructor’s enthusiasm.

5 Discussion and Conclusion

The crucial issue of introducing Computer Organization and Architecture
to the early college students is to get them exposed to Computer Science
concepts early in college studies. This is particularly important for students
who have not declared their major yet, and are looking for more experiences
about the technology-focused majors in our college.

By being exposed to engineering and hands-on laboratory-based experi-
ences early in their college experience, students may use critical thinking to
make informed decisions in the selection of hardware, which will collectively
get them exposed to expenses in computer science and engineering programs.
A simplified syllabus for this course has been shared as an attachment.

This article provides details of a revised computer organization and ar-
chitecture course, offered primarily to sophomore students in a school of
computer science and engineering course with six undergraduate major pro-
grams. After this first offering of this redesigned course, overall approval
rates have improved for this course. This first offering of this course was af-
fected by the COVID-19 implications (eliminated majority of the classroom
meetings, as hands-on design experiment experiences were moved to online
activities), although overall student evaluations were expressed positively.
We are currently collecting additional research data in current Spring 2021
semester, which -similar to Fall 2020 semester-, included online activities
with multiple delivery modalities, include synchronous and asynchronous
hands-on experiences. We will also offer this same course to a cohort in Fall

7



Figure 4: Overall experience of students, on a Likert scale from 1-10 (n=42).
Satisfaction displays an overall high-approval rate, with about 23% students
below satisfactory levels. After reviewing individual responses and feedback
from students, we attribute this to the effect of COVID-19 measures, where
about half of the students were not able to attend the classroom, and com-
plete hands-on activities. However, overall student approval rates show de-
sign projects overall increased overall student agreement, with regular bell
curve peaking around 8/10 (30% approval) which was well received. More-
over, about 12% students were completely satisfied with the course (10/10).

2021 semester, with expected fully in-class experiences after COVID-19 mea-
sures are released after herd immunity is reached. We plan to follow-up our
results after Spring 2021 and Fall 2021 semester data have been collected,
with a comparison of the affects of online learning modalities, and will po-
tentially alter some of the hands-on experiences to handle asynchronous
learning activities.

8



Figure 5: Overall experience of students, on a Likert scale from 1-10, with
Spring 2021 cohort, who experienced this course with only an online option
in Spring 2021, due to COVID-19 restrictions. (n=26). Satisfaction displays
an overall high-approval rate, however you can certainly see the negative
effect of online course experiences in this particular course. More details of
this data collected will be finalized in about a month, and will be shared
during ASEE presentation with attendees in Summer 2021 conference.

9



References

[1] Joint Task Force on Computing Curricula, Association for Computing
Machinery (ACM) and IEEE Computer Society. 2013. Computer Sci-
ence Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. Association for Computing Machinery,
New York, NY, USA.

[2] Brian W. Evans. Arduino Programming Notebook. 2007.
https://archive.org/details/arduino notebook

[3] Irv Englander. The Architecture of Computer Hardware, Systems Soft-
ware, and Networking: An Information Technology Approach, 5th Edi-
tion. Wiley, January 2014.

10



CS-215 - Computer Organization and
Architecture - Spring 2020 Syllabus

A University Catalog Course Description:

This course presents an overview of computer architecture and computer
organization as they relate to computer science. Topics include computer
components, interconnection structures, internal memory, instruction sets,
number representation in computers, parallel processing, and an elementary
introduction to assembly programming.

B Textbooks / Materials:

1. Irv Englander, “The Architecture of Computer Hardware, Systems
Software, and Networking - An Information Technology Approach”,
Wiley, 5e, Jan 2014.

2. Computer Organization and Architecture Tutorials.

https://www.geeksforgeeks.org/computer-organization-and-architecture-
tutorials/

3. Other resources will be provided as needed.

C Course Objectives:

The main goal of this course is to get you equipped with the following: Un-
derstand the basics of computer hardware and how software interacts with
computer hardware; Know the organization of the central processing unit
(CPU) and memory hierarchy; Use critical thinking to make informed de-
cisions in the selection of hardware; Learn and demonstrate how program
performance is affected by processor cache sizes; Understand how the archi-
tecture affects program performance; Demonstrate how instructions can be
implemented in a chip; Learn how to use a low-level assembly language to
manipulate registers on a computer architecture performing a specific op-
eration with data; Learn how computer organization influences high-level
languages, and vice versa.

11



D Student Learning Expectations/Outcomes:

• Identify and analyze core computer organization problems,

• Explore principles of computer architecture,

• Create a program in a low-level assembly language that works with
data that fit and exceed processor cache sizes, and measure the per-
formance impacts of doing so,

• Write a simple program in a low-level assembly language to implement
a high level program segment,

• Using an Arduino board, control a sensor via software,

• Use Linux operating system and embedded boards to implement basic
computer organization artifacts.

E Data for Research Disclosure:

Any and all results of in-class and out-of-class assignments and examinations
are data sources for research and may be used in published research. All
such use will always be anonymous.

F Meeting Schedule:

Table 1 shows a tentative weekly schedule for our Spring 2020 semester.

G Sample CS 215 Lab Experiment

In this course, you will be using a single-board computer (e.g., Arduino,
Raspberry Pi, etc.), to design several computer hardware solution as a design
experimental project.A few examples are illustrated in Figure 6 and Figure 7.

12



Figure 6: Shows a sample lab experiment using an Arduino and a liquid
crystal display (LCD) to display word characters onto a LCD screen.

13



Figure 7: Shows a designed for a car parking assist buzzer using an Arduino,
ultrasonic sensors, and a buzzer to trigger off one of the three LED’s (Red,
Yellow, and Green). When the car is initial approaching, the green LED light
would light up. As the car approach closer and reaches a certain distance,
the Yellow LED would light up. The Red LED will light up when the car is
about less than or equal to 5cm away in which the buzzer should sound off
indicating to the driver that he/she should stop.

14



Table 1: Tentative Schedule.

Weekly Outline

Week No. Week Lecture Reference

1 1/13 - 1/17 Class mechanics; Intro to Comput-
ers and Systems

Chapter 1

2 1/20 - 1/24 Intro to Systems Concepts and Ar-
chitecture

Chapter 2

3 1/27 - 1/31 Number Systems Chapter 3
4 2/3 - 2/7 Into to Arduino
5 2/10 - 2/14 Data Format Chapter 4
6 2/17 - 2/21 Representing Numerical Data Chapter 5
7 2/24 - 2/28 Into to Raspberry Pi
8 3/2 - 3/ 6 Spring Break - No Classes
9 3/9 - 3/13 Midterm Activity - Take Home

Exam
Chapters 1-
5

10 3/16 - 3/20 The Little Man Computer Chapter 6
11 3/23 - 3/27 The CPU and Memory Chapter 7
12 3/30 - 4/3 CPU and Memory: Design, En-

hancement, Implementation
Chapter 8

13 4/6 - 4/10 Input/Output Chapter 9
14 4/13 - 4/17 Computer Peripherals / Project Chapter 10
15 4/20 - 4/24 Modern Computer Systems /

Project
Chapter 11

16 4/27 - 4/31 Finals TBA

15


	Introduction
	Method
	Course Design
	Opinion Survey and Results
	Discussion and Conclusion
	University Catalog Course Description:
	Textbooks / Materials:
	Course Objectives:
	Student Learning Expectations/Outcomes:
	Data for Research Disclosure:
	Meeting Schedule:
	Sample CS 215 Lab Experiment

