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Abstract 

The recent rapid introduction of large language models has enabled new black box approaches to 

optimize the application of these models for various scenarios. GPT-4 is a multimodal large 

language model introduced by OpenAI which can answer complex questions, analyze nuanced 

data, and solve complicated programming problems. The performance of GPT is dependent upon 

the provided prompt and hyperparameters. This paper explores the effect of minor variations in 

system prompt and parameters including temperature and top-p for code generation and code 

accuracy for competitive programming tasks. Temperature controls the amount of randomness in 

the response, with a temperature of zero producing deterministic output. Top-p controls the 

cumulative probability distribution for tokens considered for the next output token. Based on the 

results, we propose approaches to optimize system prompts for code-generation and parameter 

values to improve the correctness of code. In addition, we propose a pipeline that utilizes these 

enhancements to effectively solve algorithmic puzzles common in computer science education, 

in addition to complex contest programming problems. 
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Introduction 

Programming contests are competitions in which participants attempt to write computer 

programs that solve algorithmic puzzles. Past studies have identified a range of pedagogical 

benefits for student participation in these contests, including enhancing learning outcomes by 

deepening conceptual comprehension and fostering team collaboration, along with equipping 

students for technical job interviews [1-2]. These benefits, notwithstanding, a number of hurdles 

exist to expanding participation in these contests [3].  

Artificial Intelligence (AI) tools, like ChatGPT, have been found to lower barriers to 

participation in contest programming [4]. Generative AI tools can provide scaffolding for 

participants that allow participants to succeed, even if they have limited computer science 

background and familiarity with contest programming problems. This scaffolding includes the 

ability of these systems to provide template code that partially solves a problem, which 

participants can use as a basis for a solution. These systems also provide the ability to help 

participants debug their programs when they contain errors. Despite these potential benefits, 

there is limited guidance on how participants can leverage these systems effectively to solve 

contest problems. 



2024 ASEE Middle Atlantic Conference 

© American Society for Engineering Education, 2024 

This work analyzes prompt engineering approaches that can improve GPT-4's code-generation 

accuracy and randomness with changes to the model’s temperature and system prompts. We 

assess the optimal temperature for GPT-4 to better enable its code-generation capabilities and 

observe the change in code correctness based on the personality provided to GPT-4. We propose 

a pipeline built upon GPT-4 that can generate accurate python code for complex questions in 

competitive programming contests. The result is a robust framework that utilizes dynamic 

system prompts to generate code and modify the solution. It includes a feedback loop with GPT-

4 that will iteratively remove syntactical errors present in the generated code. In addition, we 

explore its capabilities in generating sample test cases to check the validity of the generated 

output code.  

The pipeline was evaluated against various high level programming problems. In addition, we 

compared the code generated by the pipeline against the code generated in a naive approach 

without the use of system prompts. The pipeline performs significantly better than available 

approaches. An analysis of the effect of temperature and system prompt in code correctness was 

used to arrive at optimal values for these parameters.  

This exploration of the capabilities and limitations of GPT-4 in the area of code generation and 

problem processing provides insight into the role that generative AI plays in programming 

education and competitions. This pipeline helps to provide an accessible entry point to 

competitive programming contests for students that are inexperienced in the field of coding in 

two key ways. First, a similar pipeline could be integrated into programming classes. Moreover, 

the strategies utilized by the pipeline could be taught to students to help them interact more 

effectively with these tools. 

 
 

Literature Review 

Chatbots have seen major advances in the last few years. They are now able to mimic human 

agents during conversation due, in large part, to advances in large language models [5].  

GPT is an example of such a large language model, created by OpenAI. OpenAI claims that it 

can “answer follow up questions, admit its mistakes, challenge incorrect premises, and reject 

inappropriate requests” [6]. GPT-4, the latest iteration of GPT “outperforms both previous large 

language models and most state-of-the-art systems in a variety of NLP and MMLU benchmarks” 

[7]. Independent evaluations of ChatGPT support its ability to generate high quality output over 

a wide range of tasks [8]. 

There are other solutions like Codex, which is designed to work as a programming companion 

[9]. The authors conclude that “Copilot is able to generate correct and optimal solutions for some 

fundamental problems in algorithm design. However, the quality of the generated code depends 

greatly on the conciseness and depth of the prompt that is provided by the developer.”  

ChatGPT’s performance can be significantly affected by the framework’s design. Prompt 

patterns can be used to significantly increase its capabilities [10]. Previous frameworks have 

used GPT-4 for tasks as wide ranging as medical text de-identification [11] and SQL query 

generation [12].  
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Even within the context of direct interaction with the generative AI, the performance of the 

system is affected by a range of prompting strategies and system parameters. Providing test cases 

with the problem description has been shown to improve generative AI correctness when 

applying these systems to coding tasks [13]. In addition, summarizing the task to provide a more 

concise prompt has been shown to improve system output in business management applications 

[14]. Asserting a personality or goals for the system can also have a dramatic effect on the 

quality of system output [15].  

In terms of system parameters, these models have multiple settings that control the amount of 

randomness in their output [16]. This randomness is further compounded with the inherent non-

determinism of the GPT-4 API [17]. Higher settings create a larger variety of possible responses 

for a single prompt, which has been characterized as increasing the “creativity” of these models. 

On the other hand, the increasing randomness can reduce the likelihood of a correct system 

response. 

Methodology 

Multiple pipelines have been created to generate code for various use cases since OpenAI 

exposed the GPT model and API. It is also evident that standalone ChatGPT needs additional 

clarification to arrive at optimal solutions. In this paper we aim to create a pipeline that uses 

custom prompts and dynamic prompt generation for the tailored use case of generating python 

code for contest programming problems.  

 

We also analyze the effect of GPT-4 model parameters including temperature, top-p, and 

personality with respect to accuracy of the generated code. Temperature controls the randomness 

present in the model. Lowering this value allows the model to become deterministic while 

increasing it allows for more creativity. For code generation we hypothesize the use of a lower 

value since we usually want the same code to be generated for every iteration. The GPT model 

can use a system prompt containing personalities to enhance its capabilities for specific use cases 

Additionally, we try to enforce consistent parse-able output formatting via few-shot learning. 

Providing personalities with expertise in sub-fields along with examples should allow GPT to 

generate better outputs for specific inputs.  

 

 

Pipeline Architecture 

 

The pipeline proposed in Figure 1 is designed to accept the text input of a contest programming 

problem and respond with an easy-to-understand explanation of the problem and a working 

python code for solving the problem. Each block takes text data as input and transforms into an 

output based on its specified system and user prompt. All blocks in the pipeline use the “gpt-4-

1106-preview” model by OpenAI to generate the outputs. As shown in the figure, the pipeline 

contains five main blocks. 
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Figure 1: Pipeline Architecture 

 

The Block Detection component detects the required blocks present in the problem. As in the 

example in Figure 2, these blocks typically include “question”, “input format”, “output format”, 

and “constraints.” This block then returns a Javascript Object Notation (JSON) formatted string 

which encodes these sections. 

 

 
 

Figure 2: A sample problem with blocks identified by the Block Detection Component 

 

The Problem Explanation & Algorithm Detection component provides the problem description 

to the large language model to generate an easy-to-understand explanation of the problem to pair 

with the code generated by the pipeline. The prompt that is provided to create this explanation 

gives special emphasis in the prompt on getting a response with algorithms that could improve 

the code in terms of time complexity. Additionally, we specify in prompt not to generate a code 

solution. 
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The Code Generation component provides the large language model the encoded question, its 

input and output format, and the required constraints to generate a python program whose goal is 

to solve the problem. The behavior of this component changes according to the system prompt 

that it is supplied with and the temperature and top-p specified for the model.  

 

The Testcase Generator component uses the language model to create additional testcases using 

the input and output formats that were extracted from the problem. Currently these testcases are 

syntactically viable for the given problem and need not be logically viable. 

 

Finally, the Syntax Corrector component receives the generated code from the previous block 

and iteratively removes any syntactical errors present in the code that stop its execution. It uses 

sample test cases that conform to the specified input and output format to ensure that the code 

follows the required formatting. Syntax correction lets us remove the syntax errors that might be 

caused by model hallucinations or incorrect formatting. The corrected code is then provided to 

the user. 

 

System Prompts 

 

There are two distinct types of prompts provided in the GPT API. The first is a system prompt 

that provides a background for the task. The second is a user prompt with the specific problem to 

be solved. 

 

We created a set of system prompts used for code generation to test the importance of subtle 

changes in system prompts for code generation. The prompt is based on the Wolverine system 

that uses GPT-4 to debug Python scripts [18]. Variations in the prompt included the personality 

for the prompt, whether language was specified, and whether example input and output was 

provided. 

 

Three distinct personalities were tested, amateur, default, and expert. These personalities were 

generated based on data repositories [19-20] that curated prompts for various scenarios. For the 

amateur personality, the prompt began with the instruction: You are part of an automated 

program code generator. The default personality used the description: You are part of a 

personal AI code generator. The expert personality used the description: You are part of an 

elite automated program generating team. 
 
The target language was specified in some tests.  To do this, the language “Python” was inserted 

into the first sentence of the instruction.  For example, the expert personality with the language 

specified would be: You are part of an elite automated python program generating team. 

 

The pipeline required a predictable output format for the code generation block. We tested the 

ability of the large language model to use one-shot learning by providing, as part of the prompt, 

an example of the input and output that would be provided as part of the input prompt.  Fror 

example, if formatting was specified, the prompt would include the following text:  
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An example input is 
[ 
    {"question": "In this challenge you must find the sum of two integers."}, 
    {"input_format": "two space separated integers"}, 
    {"output_format": "single integer"}, 
    {"constraints": ["1<=a<=100","1<=b<=100"]}  
] 
An example output is 
{ 
    "code":"a, b = map(int, input().split())\nprint(a + b)" 
} 

 

 

Results 

Pipeline Parameterization 

 

A range of instantiations of this architecture were evaluated to explore the impact of system 

prompts and parameters on the pipeline effectiveness. A total of 25 different combinations of 

system prompts and temperature were run on questions from the IEEEXtreme 16 and IEEEXtreme 

17 dataset.  

 

As shown in Figure 3, system prompts containing the expert personality performed better than the 

other ones. Simply by instructing the model that it is an expert in python programming provided a 

boost of 5.3% in the number of testcases passed than the next best personality.  

 

  

Figure 3: Average percentage of testcases solved as a function of personality 

 

Temperature controls the randomness in the response of the large language model. High 

temperatures provide more variety and “creativity” in the response, while low values provide 

more consistent output.  As shown in Figure 4, reducing the temperature of the model to 0.4 from 
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a default value of 1.0 helps in preserving code integrity and correctness across multiple runs and 

increases the percentage of testcases solved by 1.47%. 
 

 
 

Figure 4: Average percentage of testcases solved as a function of temperature 
 

   

Additionally, Figure 5 shows that providing the language to solve the problem in, namely python, 

results in the pipeline solving 2.5% more of the testcases. For example, explicitly mentioning the 

language, as below, provided an improvement over simply omitting it. 

 
You are part of an elite automated python program generating team. 

 

 

 
Figure 5: Average percentage of testcases solved when target language is not specified or when it 

is specified as Python 
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Figure 6: Average percentage of testcases solved when target format examples are given or not 

 

Not all the system prompt options were found to improve pipeline performance as shown in Figure 

6. The use of few-shot learning in the form of an input and output example in the system prompts 

did help in standardizing the received output. However, it also led to a decrease in the number of 

testcases solved by 5.3%. The pipeline performed better when no examples were given with 

respect to formatting.  
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Pipeline Performance 

After finalizing the pipeline design by choosing the best version of the system prompts, the pipeline 

was evaluated against ChatGPT using the GPT 3.5 large language model and GPT 4.0 API. These 

systems were asked to solve twenty-five problems from IEEEXtreme 16 and 17 problem set as 

well as the questions from a generative AI-assisted competition held locally. These competitions 

were chosen to ensure that the test set included problems that the language model would not have 

been exposed to during the model's training.  

 

Figure 7: Average percentage of testcases solved for the pipeline versus baseline models 

  

As shown in Figure 7, the pipeline performs significantly better than both baseline models. The 

pipeline solved close to 60% of the testcases on average and is even able to solve 100% of the 

testcases for some problems that were not able to be solved by other models [1]. The pipeline 

had an overall testcase resolution of 59.11% as compared to 13.72% of testcases resolved by 

ChatGPT and 32.53% of testcases resolved by GPT-4. Additionally, the pipeline solved three of 

the problems with no failed testcases and one problem with a single failed testcase whereas both 

GPT-4 and ChatGPT were only able to solve one problem with no failed testcases. There were 

three problems where both ChatGPT and GPT-4 were unable to provide a viable solution, but the 

pipeline was able to solve these problems partially. 

 

Conclusions and Future Work 

GPT models and their implementations have been rising in popularity and there has been an 

increase in their various implementations. We designed one such pipeline that solves complex 

contest programming problems in python. We also analyzed the effect of change in temperature 

and system prompts in ensuring correct and consistent outputs. We further compared the 

accuracy of the pipeline versus other available approaches. The pipeline performs significantly 

better than existing approaches, namely, directly using ChatGPT or the GPT-4 API.  
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Overall, the proposed pipeline reduces the interaction required with GPT to arrive at a workable 

solution. The pipeline is also able to remove hallucinations generated by GPT and always 

provides the required input and output formatting. 

In future work, we intend to analyze the ability of this pipeline helps to provide an accessible 

entry point to competitive programming contests. We plan to explore the use of a similar pipeline 

that could be integrated into programming classes. Moreover, we plan to introduce students to 

the prompting strategies and parameterization utilized by the pipeline and evaluate whether this 

background can improve their effectiveness in using generative AI for coding tasks. 
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