
Paper ID #44863

A Large Language Model Pipeline to Automate the Solution of Competitive
Programming Problems

Mr. Devang Jayachandran, Pennsylvania State University, Harrisburg, The Capital College

Devang Jayachandran is currently a graduate student pursuing a Masters of Science in Computer Science
at the Mathematics and Computer Science department in Penn State Harrisburg. Devang received his
Bachelor’s of Engineering in Information Science from the National Institute of Engineering, Mysuru,
India and then worked at JP Morgan Chase & Co, Bengaluru, India in the field of Natural Language
Processing and Document Extraction.

Dr. Jeremy Joseph Blum, Pennsylvania State University, Harrisburg, The Capital College

Dr. Jeremy Blum is an associate professor of Computer Science at the Pennsylvania State University,
Harrisburg, PA, USA. Prior to joining Penn State Harrisburg, Dr. Blum worked as a research scientist at
the Center for Intelligent Systems Research at the George Washington University. Dr. Blum received a
D.Sc. in Computer Science and an M.S. in Computational Sciences, both from the George Washington
University, as well as a B.A. in Economics from Washington University. His research interests include
computer science education and transportation safety.

©American Society for Engineering Education, 2024

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

A Large Language Model Pipeline to Automate the Solution of

Competitive Programming Problems

Devang Jayachandran and Jeremy J. Blum
The Pennsylvania State University, Harrisburg

Abstract

The recent rapid introduction of large language models has enabled new black box approaches to

optimize the application of these models for various scenarios. GPT-4 is a multimodal large

language model introduced by OpenAI which can answer complex questions, analyze nuanced

data, and solve complicated programming problems. The performance of GPT is dependent upon

the provided prompt and hyperparameters. This paper explores the effect of minor variations in

system prompt and parameters including temperature and top-p for code generation and code

accuracy for competitive programming tasks. Temperature controls the amount of randomness in

the response, with a temperature of zero producing deterministic output. Top-p controls the

cumulative probability distribution for tokens considered for the next output token. Based on the

results, we propose approaches to optimize system prompts for code-generation and parameter

values to improve the correctness of code. In addition, we propose a pipeline that utilizes these

enhancements to effectively solve algorithmic puzzles common in computer science education,

in addition to complex contest programming problems.

Keywords

Generative Artificial Intelligence, Code Generation Pipelines, Contest Programming.

Introduction

Programming contests are competitions in which participants attempt to write computer

programs that solve algorithmic puzzles. Past studies have identified a range of pedagogical

benefits for student participation in these contests, including enhancing learning outcomes by

deepening conceptual comprehension and fostering team collaboration, along with equipping

students for technical job interviews [1-2]. These benefits, notwithstanding, a number of hurdles

exist to expanding participation in these contests [3].

Artificial Intelligence (AI) tools, like ChatGPT, have been found to lower barriers to

participation in contest programming [4]. Generative AI tools can provide scaffolding for

participants that allow participants to succeed, even if they have limited computer science

background and familiarity with contest programming problems. This scaffolding includes the

ability of these systems to provide template code that partially solves a problem, which

participants can use as a basis for a solution. These systems also provide the ability to help

participants debug their programs when they contain errors. Despite these potential benefits,

there is limited guidance on how participants can leverage these systems effectively to solve

contest problems.

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

This work analyzes prompt engineering approaches that can improve GPT-4's code-generation

accuracy and randomness with changes to the model’s temperature and system prompts. We

assess the optimal temperature for GPT-4 to better enable its code-generation capabilities and

observe the change in code correctness based on the personality provided to GPT-4. We propose

a pipeline built upon GPT-4 that can generate accurate python code for complex questions in

competitive programming contests. The result is a robust framework that utilizes dynamic

system prompts to generate code and modify the solution. It includes a feedback loop with GPT-

4 that will iteratively remove syntactical errors present in the generated code. In addition, we

explore its capabilities in generating sample test cases to check the validity of the generated

output code.

The pipeline was evaluated against various high level programming problems. In addition, we

compared the code generated by the pipeline against the code generated in a naive approach

without the use of system prompts. The pipeline performs significantly better than available

approaches. An analysis of the effect of temperature and system prompt in code correctness was

used to arrive at optimal values for these parameters.

This exploration of the capabilities and limitations of GPT-4 in the area of code generation and

problem processing provides insight into the role that generative AI plays in programming

education and competitions. This pipeline helps to provide an accessible entry point to

competitive programming contests for students that are inexperienced in the field of coding in

two key ways. First, a similar pipeline could be integrated into programming classes. Moreover,

the strategies utilized by the pipeline could be taught to students to help them interact more

effectively with these tools.

Literature Review

Chatbots have seen major advances in the last few years. They are now able to mimic human

agents during conversation due, in large part, to advances in large language models [5].

GPT is an example of such a large language model, created by OpenAI. OpenAI claims that it

can “answer follow up questions, admit its mistakes, challenge incorrect premises, and reject

inappropriate requests” [6]. GPT-4, the latest iteration of GPT “outperforms both previous large

language models and most state-of-the-art systems in a variety of NLP and MMLU benchmarks”

[7]. Independent evaluations of ChatGPT support its ability to generate high quality output over

a wide range of tasks [8].

There are other solutions like Codex, which is designed to work as a programming companion

[9]. The authors conclude that “Copilot is able to generate correct and optimal solutions for some

fundamental problems in algorithm design. However, the quality of the generated code depends

greatly on the conciseness and depth of the prompt that is provided by the developer.”

ChatGPT’s performance can be significantly affected by the framework’s design. Prompt

patterns can be used to significantly increase its capabilities [10]. Previous frameworks have

used GPT-4 for tasks as wide ranging as medical text de-identification [11] and SQL query

generation [12].

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

Even within the context of direct interaction with the generative AI, the performance of the

system is affected by a range of prompting strategies and system parameters. Providing test cases

with the problem description has been shown to improve generative AI correctness when

applying these systems to coding tasks [13]. In addition, summarizing the task to provide a more

concise prompt has been shown to improve system output in business management applications

[14]. Asserting a personality or goals for the system can also have a dramatic effect on the

quality of system output [15].

In terms of system parameters, these models have multiple settings that control the amount of

randomness in their output [16]. This randomness is further compounded with the inherent non-

determinism of the GPT-4 API [17]. Higher settings create a larger variety of possible responses

for a single prompt, which has been characterized as increasing the “creativity” of these models.

On the other hand, the increasing randomness can reduce the likelihood of a correct system

response.

Methodology

Multiple pipelines have been created to generate code for various use cases since OpenAI

exposed the GPT model and API. It is also evident that standalone ChatGPT needs additional

clarification to arrive at optimal solutions. In this paper we aim to create a pipeline that uses

custom prompts and dynamic prompt generation for the tailored use case of generating python

code for contest programming problems.

We also analyze the effect of GPT-4 model parameters including temperature, top-p, and

personality with respect to accuracy of the generated code. Temperature controls the randomness

present in the model. Lowering this value allows the model to become deterministic while

increasing it allows for more creativity. For code generation we hypothesize the use of a lower

value since we usually want the same code to be generated for every iteration. The GPT model

can use a system prompt containing personalities to enhance its capabilities for specific use cases

Additionally, we try to enforce consistent parse-able output formatting via few-shot learning.

Providing personalities with expertise in sub-fields along with examples should allow GPT to

generate better outputs for specific inputs.

Pipeline Architecture

The pipeline proposed in Figure 1 is designed to accept the text input of a contest programming

problem and respond with an easy-to-understand explanation of the problem and a working

python code for solving the problem. Each block takes text data as input and transforms into an

output based on its specified system and user prompt. All blocks in the pipeline use the “gpt-4-

1106-preview” model by OpenAI to generate the outputs. As shown in the figure, the pipeline

contains five main blocks.

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

Figure 1: Pipeline Architecture

The Block Detection component detects the required blocks present in the problem. As in the

example in Figure 2, these blocks typically include “question”, “input format”, “output format”,

and “constraints.” This block then returns a Javascript Object Notation (JSON) formatted string

which encodes these sections.

Figure 2: A sample problem with blocks identified by the Block Detection Component

The Problem Explanation & Algorithm Detection component provides the problem description

to the large language model to generate an easy-to-understand explanation of the problem to pair

with the code generated by the pipeline. The prompt that is provided to create this explanation

gives special emphasis in the prompt on getting a response with algorithms that could improve

the code in terms of time complexity. Additionally, we specify in prompt not to generate a code

solution.

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

The Code Generation component provides the large language model the encoded question, its

input and output format, and the required constraints to generate a python program whose goal is

to solve the problem. The behavior of this component changes according to the system prompt

that it is supplied with and the temperature and top-p specified for the model.

The Testcase Generator component uses the language model to create additional testcases using

the input and output formats that were extracted from the problem. Currently these testcases are

syntactically viable for the given problem and need not be logically viable.

Finally, the Syntax Corrector component receives the generated code from the previous block

and iteratively removes any syntactical errors present in the code that stop its execution. It uses

sample test cases that conform to the specified input and output format to ensure that the code

follows the required formatting. Syntax correction lets us remove the syntax errors that might be

caused by model hallucinations or incorrect formatting. The corrected code is then provided to

the user.

System Prompts

There are two distinct types of prompts provided in the GPT API. The first is a system prompt

that provides a background for the task. The second is a user prompt with the specific problem to

be solved.

We created a set of system prompts used for code generation to test the importance of subtle

changes in system prompts for code generation. The prompt is based on the Wolverine system

that uses GPT-4 to debug Python scripts [18]. Variations in the prompt included the personality

for the prompt, whether language was specified, and whether example input and output was

provided.

Three distinct personalities were tested, amateur, default, and expert. These personalities were

generated based on data repositories [19-20] that curated prompts for various scenarios. For the

amateur personality, the prompt began with the instruction: You are part of an automated

program code generator. The default personality used the description: You are part of a

personal AI code generator. The expert personality used the description: You are part of an

elite automated program generating team.

The target language was specified in some tests. To do this, the language “Python” was inserted

into the first sentence of the instruction. For example, the expert personality with the language

specified would be: You are part of an elite automated python program generating team.

The pipeline required a predictable output format for the code generation block. We tested the

ability of the large language model to use one-shot learning by providing, as part of the prompt,

an example of the input and output that would be provided as part of the input prompt. Fror

example, if formatting was specified, the prompt would include the following text:

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

An example input is
[
 {"question": "In this challenge you must find the sum of two integers."},
 {"input_format": "two space separated integers"},
 {"output_format": "single integer"},
 {"constraints": ["1<=a<=100","1<=b<=100"]}
]
An example output is
{
 "code":"a, b = map(int, input().split())\nprint(a + b)"
}

Results

Pipeline Parameterization

A range of instantiations of this architecture were evaluated to explore the impact of system

prompts and parameters on the pipeline effectiveness. A total of 25 different combinations of

system prompts and temperature were run on questions from the IEEEXtreme 16 and IEEEXtreme

17 dataset.

As shown in Figure 3, system prompts containing the expert personality performed better than the

other ones. Simply by instructing the model that it is an expert in python programming provided a

boost of 5.3% in the number of testcases passed than the next best personality.

Figure 3: Average percentage of testcases solved as a function of personality

Temperature controls the randomness in the response of the large language model. High

temperatures provide more variety and “creativity” in the response, while low values provide

more consistent output. As shown in Figure 4, reducing the temperature of the model to 0.4 from

0 5 10 15 20 25

amateur

default

expert

percentage of problems solved

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

a default value of 1.0 helps in preserving code integrity and correctness across multiple runs and

increases the percentage of testcases solved by 1.47%.

Figure 4: Average percentage of testcases solved as a function of temperature

Additionally, Figure 5 shows that providing the language to solve the problem in, namely python,

results in the pipeline solving 2.5% more of the testcases. For example, explicitly mentioning the

language, as below, provided an improvement over simply omitting it.

You are part of an elite automated python program generating team.

Figure 5: Average percentage of testcases solved when target language is not specified or when it

is specified as Python

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

Figure 6: Average percentage of testcases solved when target format examples are given or not

Not all the system prompt options were found to improve pipeline performance as shown in Figure

6. The use of few-shot learning in the form of an input and output example in the system prompts

did help in standardizing the received output. However, it also led to a decrease in the number of

testcases solved by 5.3%. The pipeline performed better when no examples were given with

respect to formatting.

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

Pipeline Performance

After finalizing the pipeline design by choosing the best version of the system prompts, the pipeline

was evaluated against ChatGPT using the GPT 3.5 large language model and GPT 4.0 API. These

systems were asked to solve twenty-five problems from IEEEXtreme 16 and 17 problem set as

well as the questions from a generative AI-assisted competition held locally. These competitions

were chosen to ensure that the test set included problems that the language model would not have

been exposed to during the model's training.

Figure 7: Average percentage of testcases solved for the pipeline versus baseline models

As shown in Figure 7, the pipeline performs significantly better than both baseline models. The

pipeline solved close to 60% of the testcases on average and is even able to solve 100% of the

testcases for some problems that were not able to be solved by other models [1]. The pipeline

had an overall testcase resolution of 59.11% as compared to 13.72% of testcases resolved by

ChatGPT and 32.53% of testcases resolved by GPT-4. Additionally, the pipeline solved three of

the problems with no failed testcases and one problem with a single failed testcase whereas both

GPT-4 and ChatGPT were only able to solve one problem with no failed testcases. There were

three problems where both ChatGPT and GPT-4 were unable to provide a viable solution, but the

pipeline was able to solve these problems partially.

Conclusions and Future Work

GPT models and their implementations have been rising in popularity and there has been an

increase in their various implementations. We designed one such pipeline that solves complex

contest programming problems in python. We also analyzed the effect of change in temperature

and system prompts in ensuring correct and consistent outputs. We further compared the

accuracy of the pipeline versus other available approaches. The pipeline performs significantly

better than existing approaches, namely, directly using ChatGPT or the GPT-4 API.

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

Overall, the proposed pipeline reduces the interaction required with GPT to arrive at a workable

solution. The pipeline is also able to remove hallucinations generated by GPT and always

provides the required input and output formatting.

In future work, we intend to analyze the ability of this pipeline helps to provide an accessible

entry point to competitive programming contests. We plan to explore the use of a similar pipeline

that could be integrated into programming classes. Moreover, we plan to introduce students to

the prompting strategies and parameterization utilized by the pipeline and evaluate whether this

background can improve their effectiveness in using generative AI for coding tasks.

Acknowledgments

To be included in the de-anonymized version of the paper.

References

1 A. Bloomfield, B. Sotomayor. 2016. A programming contest strategy guide. In Proceedings of the 47th

ACM Technical Symposium on Computing Science Education (SIGCSE '16). Association for Computing

Machinery, New York, NY, USA, 609–614. DOI: https://doi.org/10.1145/2839509.2844632

2 M. Armoni 2011. CS contests for students: why and how? ACM Inroads 2, 2 (June 2011), 22–23. DOI:

https://doi.org/10.1145/1963533.1963540

3 J.J. Blum. 2023. Competitive Programming Participation Rates: An Examination of Trends in U.S. ICPC

Regional Contests. Discover Education, 2(11), 12.

4 D. Jayachandran, P. Maldikar, T. S. Love, J.J. Blum. 2024. “Leveraging Generative Artificial Intelligence

to Broaden Participation in Computer Science,” to appear at the Association for the Advancement of

Artificial Intelligence Symposium on Increasing Diversity in AI Education and Research, March 25-27,

Stanford University, 1-6.

5 E. Adamopoulou and L. Moussiades. 2020. “Chatbots: History, technology, and applications,” Mach.

Learn. Appl., vol. 2, p. 100006, Dec. 2020, doi: 10.1016/j.mlwa.2020.100006.

6 “Introducing ChatGPT.” Accessed: Jan. 12, 2024. [Online]. Available: https://openai.com/blog/chatgpt

7 OpenAI et al. 2023. “GPT-4 Technical Report.” arXiv, Dec. 18, 2023. doi: 10.48550/arXiv.2303.08774.

8 J. Kocoń et al., 2023. “ChatGPT: Jack of all trades, master of none,” Inf. Fusion, vol. 99, p. 101861, Nov.

2023, doi: 10.1016/j.inffus.2023.101861.

9 A. M. Dakhel et al., 2023. “GitHub Copilot AI pair programmer: Asset or Liability?” arXiv, Apr. 14, 2023.

doi: 10.48550/arXiv.2206.15331.

10 J. White et al., 2023. “A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.” arXiv,

Feb. 21, 2023. Accessed: Oct. 03, 2023. [Online]. Available: http://arxiv.org/abs/2302.11382

11 Z. Liu et al. 2023. “DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4.” arXiv, Mar. 20,

2023. Accessed: Sep. 01, 2023. [Online]. Available: http://arxiv.org/abs/2303.11032

12 I. Trummer. 2023. Demonstrating GPT-DB: Generating Query-Specific and Customizable Code for SQL

Processing with GPT-4. Proc. VLDB Endow. 16, 12 (August 2023), 4098–4101.

https://doi.org/10.14778/3611540.3611630

13 L. Murr, M. Grainger, and D. Gao. 2023. Testing LLMs on Code Generation with Varying Levels of

Prompt Specificity. arXiv preprint arXiv:2311.07599.

14 K. Busch, A. Rochlitzer, D. Sola, and H. Leopold. 2023. Just tell me: Prompt engineering in business

process management. In Proceedings of the In-ternational Conference on Business Process Modeling,

Development and Support (pp. 3-11). Cham: Springer Nature Switzerland. doi.org/10.1007/978-3-031-

34241-7_1

15 G. Marvin, N. Hellen, D. Jjingo, and J. Nakatumba-Nabende. 2024. Prompt Engineering in Large Language

Models. In: Jacob, I.J., Piramuthu, S., Falkow-ski-Gilski, P. (eds) Data Intelligence and Cognitive

Informatics. ICDICI 2023. Algorithms for Intelligent Systems. Springer, Singapore. doi.org/10.1007/978-

981-99-7962-2_30

2024 ASEE Middle Atlantic Conference

© American Society for Engineering Education, 2024

16 S. Ouyang, J.M. Zhang, M. Harman, and M. Wang. 2023. LLM is Like a Box of Chocolates: the Non-

determinism of ChatGPT in Code Generation. arXiv preprint arXiv:2308.02828.

17 “Non-determinism in GPT-4 is caused by Sparse MoE,” 152334H. https://152334H.github.io/blog/non-

determinism-in-gpt-4/. Accessed Nov 07 2023

18 GitHub (2023) GitHub–biobootloader/wolverine. GitHub. https://github.com/biobootloader/wolverine.

Accessed 23 April 2023.

19 GitHub (2023) GitHub– formulahendry/awesome-gpt. GitHub.

https://github.com/formulahendry/awesome-gpt. Accessed 23 April 2023

20 GitHub (2023) GitHub– xubujie/llm-application-prompts. GitHub. https://github.com/xubujie/llm-

application-prompts. Accessed 23 April 2023

https://152334h.github.io/blog/non-determinism-in-gpt-4/
https://152334h.github.io/blog/non-determinism-in-gpt-4/
https://github.com/formulahendry/awesome-gpt
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fxubujie%2Fllm-application-prompts&data=05%7C02%7Cdxj5305%40psu.edu%7C3c082350458448f9c8eb08dc4b4cfad9%7C7cf48d453ddb4389a9c1c115526eb52e%7C0%7C0%7C638468041194540192%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=TO8V%2Bz1%2FjououQ1aKNzkL3JFonKXoHcKCFDQzTr3PyM%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fxubujie%2Fllm-application-prompts&data=05%7C02%7Cdxj5305%40psu.edu%7C3c082350458448f9c8eb08dc4b4cfad9%7C7cf48d453ddb4389a9c1c115526eb52e%7C0%7C0%7C638468041194540192%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=TO8V%2Bz1%2FjououQ1aKNzkL3JFonKXoHcKCFDQzTr3PyM%3D&reserved=0

