
Paper ID #37483

A Path to Computational Thinking and Computer
Programming through Physics Problems
Robert H Mason (Professor)

I graduated with a B.S. in physics (1995) and an M.S. in physics (1997) from Southern Illinois University, Edwardsville. I
taught as an adjunct instructor at various schools around Edwardsville for the 1997-1998 academic year before accepting a
full-time position at Moberly Area Community College in Moberly, MO. After a year in Missouri I took my current
position at Olney Central College in Olney, IL (1999). Over the last 23 years I have taught a wide range of courses;
mathematics, physics, physical science, and pre-engineering. I found the pre-engineering courses to be especially
rewarding due to the diversity and the rigor of the material. In 2016 I completed an M.A. in math education at Eastern
Illinois University because of a keen interest in math as well as the need for a program that was flexible enough to
accommodate my teaching schedule. This was a good decision as the focus on pedagogy was invaluable in the classroom,
even with my experience. around that same time I became aware of a group called Partnership for Integration of
Computation into Undergraduate Physics (PICUP) and started attending workshops. My experiences motivated me to
pursue my doctorate in applied physics at Southern Illinois University, Carbondale, beginning in 2020. It is my work at
SIUC that has introduced me to the ASEE.

Hansika Sirikumara

Hansika Sirikumara, Ph.D., is an Assistant professor of Physics and Engineering at E. S. Witchger School of Engineering,
Marian University Indianapolis. She completed her MS and PhD degrees from Southern Illinois University Carbondale.
Her research expertise/interests are in engineering material properties for semiconductor device applications using
computational methods.

© American Society for Engineering Education, 2022
Powered by www.slayte.com

A Path to Computational Thinking and Computer Programming
through Disciplinary-Based Problems

Robert H Mason
Olney Central College, Olney, IL and Schools of Physics and Applied Physics, Southern Illinois University

Carbondale, Carbondale, IL

Dr. Hansika I Sirikumara
E.S. Witchger School of Engineering, Marian University, Indianapolis, IN

Dr. Thushari Jayasekera
School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL

Abstract

We propose a novel approach to improve computational thinking (CT) and computer
programming (CP) via a disciplinary-based problem solving approach. We hypothesize that the
syntax needed for writing a computer code can be introduced through support programs in
problem solving. This article demonstrates this approach through the problem of non-linear
pendulum, a familiar problem solved in most engineering and physics classes. It is basically
focused on implementing numerical techniques for solving ordinary differential equations
(ODEs). Instead of using a syntax-based teaching approach, support programs can be used to
identify the required coding elements. We envision that this approach can be transferable to many
problems in STEM classes to motivate students towards computer programming.

1 Introduction

The proliferation of computer science into STEM fields has resulted in a high demand for STEM
jobs in computing. Thus, it is crucial that students majoring in STEM subjects other than
Computer Science (non-CS) should have easily accessible resources to develop CT and practice
CP, which is a skill they should develop like reading, writing, and solving algebraic
equations.1,2,3,4. We hypothesize that the use of support programs through the problem solving
instead of traditional syntax-based approach for teaching computer programming for those who
have no prior-knowledge of computer programming.

2 Explanation of the Problem and Computational Details

The dynamics of the simple pendulum consisting of a mass, m attached to the end of a massless
string of length L is given by5:

d2θ

dt′2
= − g

L
sinθ

Notice that we use t′ as the time, which is measured in seconds.

By the conversion, t → t′√
l/g

, above equation changes to:

d2θ

dt2
= −sin θ (1)

Figure 1: (a)Schematic diagram of a simple pendulum. (b) θ (blue) and θ̇ (red) as a function of
time (c) the phase space diagram, i. e. angular velocity θ̇ vs θ.

Now t is measured in terms of
√
l/g ,i.e. t in the above equation is dimensionless.

This is a non-linear second order ordinary differential equation, which is hard to be solved
analytically. In the small angle approximation, for which, sin θ ∼ θ

d2θ

dt2
= −θ

, which has a solution of the form, θ = θ0sin(t+ ϕ), where θ0 and ϕ are determined using the
boundary conditions. If the pendulum bob is released at an angle θ0 with a zero velocity, θ0 is the
initial angle and ϕ is zero.

Here, θ is a periodic function of t. We can clearly visualize the periodic nature in θ vs t graph.
Additionally, we can plot the phase space diagram, which also shows the periodic nature of the
motion as shown in Fig. 1.

The phase space diagram shown in the Fig. 1 shows that the pendulum bob passes the same
position with same speed, which assures the periodic motion. At time t = 0, pendulum bob is
released from rest at an angle θ0 = 10o. This starting position is marked by A in the plots.
Position B is the central position (where θ = 0), when the pendulum bob passes with the highest
speed and reach the maximum angle (i.e. θ0) at position C. The speed of the pendulum bob
reaches zero at position C and changes the direction of motion. It will reach the original position
A via the central point D.

The dynamics of the simple pendulum for large angles described by eq. 1 is a non-linear second
order ODE, which can be solved using numerical approaches. Here, students can be guided to
numerically solve the first order ODEs and second order ODEs using support programs. Students
will be guided to improve CT through applying the numerical techniques to solve non-linear
pendulum.

3 Numerical Solutions to First Order ODEs

Support Program Solve the following equation numerically with the boundary condition
at t=0, N=3000. Take τ = 5s.

dN

dt
= −N

τ
(2)

Write a computer code to plot N as a function of t, using different numerical algorithms, and
compare the solution with the analytic solution.

This equation has an analytic solution7, N(t) = N0e
(−t/τ) where the constant, N0 is determined

using the boundary condition of the physical problem, and τ is a characteristic time constant of
the system. Even though this equation has an analytic solution, students can be guided to learn
numerical solutions to first order ODEs using this problem.

First the independent axis t will be descretized for the time axis tinitial to tfinal with a step size
∆t.

Figure 2: The axis of independent variable is discretized in steps of ∆t.

The goal of a numerical algorithm is to evaluate N(t+∆t) for all grid points. There are different
algorithms to do this task. Here We will use two numerical algorithms without their mathematical
derivation, which can be found elsewhere6.

Euler Algorithm N(t+∆t) relates to N(t)) as

N(t+∆t) = N(t) + ∆tf(N(t), t),

Fourth Order Runge-Kutta (RK4) Method finds,

N(t+∆t) = N(t) +
1

6
(k1 + 2k2 + 2k3 + k4) ,

where, k1 = ∆tf(N, t)

k2 = ∆tf(N +
1

2
k1, t+

1

2
∆t)

k3 = ∆tf(N +
1

2
k2, t+

1

2
∆t)

k4 = ∆tf(N + k3, t+∆t)

where f(N, t) = −(N(t))/τ for this problem defined by eq. 2.

Implementation of the algorithm The numerical algorithms can be implements in python
as:

Input Parameters
tau=1 # Known for the given problem
N=3000 # given - the N at time t=0
tinitial=0.0
tfinal=3.0 # Notice this t is now given in τ
deltat=0.05 # Defined by the programmer, which must assure the convergence of the results.
import numpy as np
tlist=np.arange(tinitial,tfinal,deltat)
Numerical Solutions -Euler Algorithm
Nlist=[] # creating a list for storing the data
def fxn(N,t):

return -N/tau
for t in tlist:

Nlist.append(N)
N+=deltat*exp(-t/tau)

Plotting Data
import matplotlib.pyplot as plt
plt.plot(tlist,Nlist)
plt.show()

The results for eq. 2 , displayed in Fig. 3, show the increase in the accuracy for different
algorithms.

Figure 3: Analytical and Numerical solutions for the eq. 2

In a similar way, RK4 algorithm can be implemented in 4 steps as follows.

RK4 Algorithm:
for t in tlist:

Nlist.append(N)
k1 = ∆t fxn(N,t)
k2 = ∆t fxn(N+1

2
k1, t+ 1

2
∆t)

k3 = ∆t fxn(N+1
2
k2, t+ 1

2
∆t)

k4 = ∆t fxn(N+k3, t+∆t)
N+ = 1

6
(k1 + 2k2 + 2k3 + k4)

4 Numerical Solutions to Coupled First Order ODEs

Support Program (Numerical solutions to coupled first order ODEs.)
Consider the following two coupled ODEs.

dx

dt
= −0.3x+ 0.8y and

dy

dt
= 0.5x− 0.25y (3)

which can be written in the matrix form:

d
dt

(
x
y

)
=
(
−0.3 0.8
0.5 −0.25

) (
x
y

)
which can be written as d

dt
X⃗ = AX⃗

This set of equation has a solution:
x(t)=α a11e

λ1t + βa21 eλ2t and y(t) = α a12e
λ1t + βa22 eλ2t

where λ1 and λ2 are the eigenvalues of the matrix A and the coefficients (aij) are its eigen-
vectors. The constants α and β are determined by the boundary conditions.
Write a program to numerically solve the above two ODEs. Plot the solutions along with
the analytic solution for few selected initial conditions.

Figure 4: Solution to the coupled differential equation (eq.3) with 4 different sets of boundary
conditions. The solid lines are the analytic solution and the dotted lines are the numerical solutions

Figure 4 shows the results of eq.3, which were numerically solved for different boundary
conditions: (a) x=-7,y=7 (red), (b) x=7,y=-6.5 (blue), (c) x=-7,y=4 (green) and (d) x=8,y=-4
(orange). The implementation of the algorithm (Euler) is shown below.

import numpy as np
Input Parameters:
x,y=-7,7
tinitial,tfinal=0,10.0
deltat=0.01
Diescretization of time axis
tlist=np.arange(tinitial,tfinal,deltat)
def fxnxy(x,y):

fxnx=-0.3x+0.8y
fxny=0.50x-0.25y
return fxnx,fxny

Euler Algorithm
xlist=[]
ylist=[]
for t in tlist:

xlist.append(x)
ylist.append(y)
x+=∆t * fxnxy[0]
y+=∆t * fxnxy[1]

Euler Algorithm
from matplotlib import pylab as pl
pl.plot(xlist,ylist)
pl.show()

5 Numerical Solutions to Non-Linear Simple Pendulum

Dynamics of the non-linear pendulum is described by a second order ODE given in eq. 1. A
common approach to numerically solve a second order ODE is to consider it as two coupled first
order ODEs. The eq. 1 can be considered as:

dθ

dt
= ω and

dω

dt
= −sin θ (4)

These two first order ODEs are coupled through time. We can solve coupled first order ODEs
using any algorithm discussed in the previous section. The assignment of applying the numerical
solutions to solve eq. 1 will improve student’s Computational Thinking.

The angular displacement (θ) vs. time (t) and the phase space diagram for the results obtained for
pendulum with initial angle θ = 100 using ∆t = 0.01 and ∆t = 0.001 plotted with analytic
solutions are shown in Fig. 5. It appears that (Fig.6) when we use a time step, ∆t = 0.01,
numerical results generated with RK4 algorithm agree with the analytic solution for small angles.
However, Euler method does not seem to converge with ∆t = 0.01.

Figure 5: Numerical and Analytical solutions to nonlinear simple pendulum with initial angle
θ0 = 100. Upper and lower panels show the results obtained with two time steps ∆t = 0.01 and
∆t = 0.001.

Figure 6: Numerical and Analytical solutions to non-linear simple pendulum with initial angle
θ0 = 100 using ∆t = 0.01

Numerical Instability: When we analyze the solution for the longer time period (Fig. 6), we note
that the solutions with Euler method becomes highly unstable. This numerical instability is a
result from accumulation of error through the computation, which has been discussed. We can
conclude that the Euler method is not suitable for solving the nonlinear simple pendulum.
Previous studies have used a improved Euler-Cromer algorithm which fixes that numerical
instability. However, we did not include that in this discussion. This exercise clearly demonstrate
the importance of checking the convergence of all calculation parameters before we produce
realistic results.

Now we will move on with RK4 algorithm. The results of nonlinear simple pendulum for large
angles is shown in Fig. 7. Unlike in the small angle approximation, the time period strongly
depends on the maximum angle of oscillations. The variation of time period follows the data
reported in the literature8.

Figure 7: Angular displacement vs. time (left) and the angular velocity (right) as a function of time
for nonlinear simple pendulum. Results with maximum angle θ0 = 100 and θ0 = 1750 are shown
in upper and lower panels.

6 Conclusion

We provided a novel approach with support programs to identify required coding elements to
teach computer programming for non-CS STEM majors We demonstrated this approach with the
problem of simple pendulum, a routinely taught problem in upper level engineering and physics
classes. We envision that similar exercises can be developed to improve CT and CP among
non-CS STEM major students in upper division undergraduate students or starting graduate
students.

References

[1] Li, Y., Schoenfeld A. H., diSessa A. A., Graesser A. C., Benson L. C., English L. D., Duschl
R. H., “ On Computational Thinking and STEM Education”, Journal of STEM Education
Research, 3, 147, (2020).

[2] Lyon J. A., Magana, A. J., “Computational Thinking in Higher Education: A Review of the
Literature”, Computer Applications in Engineering Education, 28, 1174, (2020).

[3] Swaid, S.I, ”Bringing Computational Thinking to STEM Education”, Procedia
Manufacturing, 3, 3657, (2015).

[4] Wang J. M., ”Computational Thinking”,Commun. ACM., 49, 33-35, (2014).

[5] Thornton, S. T., Marion J. B., ” Classical Dynamics of Paticles and Systems”, Thomson
Learning (2003).

[6] Newman,M., “Computational Physics”, (2012).

[7] Giordano, N. J., Nakanishi H., “Computational Physics”, Pearson Education Inc. (2006).

[8] Kidd R. B., Fogg S. L., “A Simple Formula for the Large Angle Pendulum Period”, Physics
Teacher, 40, 81, (2002).

