
1

A Sophomore-Level Reverse Software Engineering
Project in Computer Systems

Cynthia C. Fry
Department of Computer Science

Baylor University

Gennie Mansi
Senior, Statistics, Honors Program

Baylor University

Kevin Kulda
Senior, Baylor Business Fellow, Management Information Systems

Baylor University

Abstract
On your first day on the job with a new company, you are presented with a challenge.

A piece of executable code has been found on an older server, and you must determine what
the code is designed to do. In CSI 2334, “Introduction to Computer Systems (Computer
Systems)”, we introduce to the students a group project simulating such an event. Group
projects are used frequently to provide similar learning environments that capitalize on the
benefits of peer-to-peer instruction and cooperative learning.

The challenge is presented, the students are put on teams, and then the work begins.
This paper will document the process taken by the student teams to:

• Determine how to view a binary file.

• Determine what tools are available for use.

• Work with the tools and the executable file to determine whether the file is an old
game, a piece of malicious code, or both.

• Once the nature of the binary file is known, students will

1. Modify game play,
2. Quarantine the malicious code, or
3. Both.

• Formulate a final report and presentation to be made to a panel of experts.

This paper will document the process conducted by one of the student teams from the
Spring 2019 semester, and the methods of assessment used to evaluate each team’s results.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 1



2

1 Introduction
So how does one explore an executable without executing it?
Given the plethora of malware, techniques in detecting malicious code have evolved quickly.

Novel security threats such as the inclusion of malware that can decompress and decipher itself
only increase the need for new detection techniques [1]. Additionally, hackers obfuscate the
executable’s function, making it difficult to identify and isolate malicious segments of code.
There are a variety of ways to obfuscate code, including encoding the data in unusual forms,
reordering loops and expressions, inserting irrelevant code, removing comments, and remov-
ing or replacing identifier names [2]. Consequently, researchers aim to assist the tedious and
time consuming process of manual deobfuscation by developing tools that can quickly detect,
analyze, and simplify obfuscated code.

An increasing number of deobfuscation tools use machine learning techniques. For exam-
ple, a group of researchers from Carnegie Mellon developed a tool that uses machine learning
techniques to perform semantic analysis of code in order to remove instructions that write to
registers or memory without contributing to the outcome or effect of the function. They also
applied related techniques to detect similarities in malware semantics [3]. Other research entails
applying Deep Learning based systems and Deep Neural Networks [4], classification [5], and
different versions of the perceptron algorithm [6]. Research in malicious software detection
even extends into detecting malicious smartphone applications, which is becoming an increas-
ing concern with the advent of open source platforms such as Android [7].

In practice, the most common and well-known reverse engineering tool is IDA, particularly
IDA Pro, which is a state-of-the art dissembler [5]. Plug-ins developed for IDA include tools
such as a deobfuscator developed by the Riverside Research Institute, which uses pattern recog-
nition and instruction emulation to deobfuscate code [8]. The major disadvantage to IDA Pro is
that its license is extremely expensive.

In April 2019, the National Security Agency (NSA) released a free, open-source disassem-
bler called GHIDRA that can analyze compiled code from Windows, Mac OS, and Linux. It
can perform decompiliation, assembly, graphing and scripting, and supports plug-ins and scripts
that other developers create [9]. This disassembler has been used widely in US government
agencies to investigate suspicious software and various malware strains. Some have speculated
that GHIDRA may catch up to IDA, since the NSA released it as an open source program [10].
Another tool that is becoming increasingly popular due to its clean interface and its adaptability
to a variety of platforms, architectures, and compilers is BinaryNinja [11].

In this paper we will provide an overview of the project from the students’ perspective. This
perspective will include: Project Initiation, Students’ Approach to the Problem, Capabilities
of Various Online Tools, Discovery: Functionality of the Project, Design: Modifications to
Malicious Segments and Functionality, and Implementation.

2 Project Initiation
Computer Systems is a sophomore-level semester (15-week) course which introduces the

concepts of computer system organization, and examines the relationship between software and

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 2



3

hardware. Computer organization and representation of information in a computer are also
discussed. The Intel 80x86 family of processors are used as the basis for this study. Much of
the course focuses on the low-level language interpretation structure provided by the x86, with
low-level language assignments for the Intel 80x86 on a personal computer.

On the first day of class the students are told that an unknown executable has been down-
loaded to their machines. They are then presented with a series of questions to help connect the
relevance of the current (as well as preparatory) course to the project challenge:

• How do you know if the file is safe to open?

• What might happen when you open the file?

• Is there a way to tell what the file’s behavior is before opening it?

After an in-class discussion, the students are asked to answer these questions in a brief white
paper.

Mid-way through the semester, once computer organization, the basic instruction set, the
debugger and the disassembler have been presented, the group project is introduced. For the
Spring 2019 semester, the project was introduced as follows:

”This morning our internal servers, while doing some routine history scans, dis-
covered a newly cataloged executable that had no tracking data available. As this
raises our Agency’s security level to orange, your team has been assigned to deter-
mine what this code does.”

Further topics are presented (reversing, methods of reversing, types of malware, etc.), and
the students are tasked with doing some independent research on how to determine the behavior
of the mysterious binary file. In particular, the teams are asked to investigate currently available
software to assist in their project. Incrementally, their findings are presented to the instructor
in a series of progress reports. They have the remaining weeks in the semester to complete
their investigation, present their findings, and turn in a final report after completing a final
presentation.

The groups are determined through a rigorous questionnaire administered through the Com-
prehensive Assessment of Team Member Effectiveness system (CATME.org). Time is spent in
class discussing the importance of working together and learning to value each team member’s
contributions. The team members must assess each other’s effectiveness with both a formative
assessment conducted midway through the group project, as well as a summative assessment af-
ter the final projects are submitted. Students are given two assignments regarding team building
and team dynamics before they begin the formative assessment.

These assessments are graded by evaluating the consideration used by each student in their
assessment of their team members. This grade becomes an individual component in the stu-
dent’s overall course grade and an adjustment factor is determined from it. The individual
adjustment factor is used as a multiplier in each student’s group project grade to dispense credit
fairly among team members.

All materials used in this course in the Spring 2019 semester can be found here:

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 3



4

https://classnotes.ecs.baylor.edu/wiki/CSI 2334 Fry Spring 2019, (username: CSI2334S19, pass-
word: FryMansiKuldaASEE2020). This includes the CSI 2334 Course syllabus, the CSI 2334
Course calendar, and the CSI 2334 Spring 2019 Project (among other items).

3 Students’ approach to the problem
The students’ approach to the problem had three phases. The first entailed a preliminary ex-

ploration of the executable and choosing which tools to use. The next phase entailed identifying
how the executable functioned and how to isolate malicious segments of code. Finally, students
implemented and tested their own additional modifications.

Most students do not have previous experience with reverse engineering binary executables,
so the first step is an exploration of the different tools available for reverse engineering software.
A preliminary search reveals both IDA (particularly IDA Pro) and BinaryNinja as the most used
platforms. Free demo versions are available for both softwares, and these are the ones most used
by students. Once a platform(s) is chosen, students must explore what settings and views are
most helpful for analysis, and how to switch and alter those views.

The initial exploration entails scrolling through the executable’s contents, trying to separate
out functions that seemed central to the program’s operation versus functions that were intended
to obfuscate the purpose of the executable. While students familiarized themselves with the
structure of the program, they searched for strings that consistently appeared in the console
window, such as ‘Enter you guess’. Upon finding the string, students explored the area around
that string to understand the execution flow. Anytime they lost their spot in the executable
and did not know how to return, they could always return to their starting spot by searching
for the string and retracing their steps. They then proceeded to identify large sections of the
code: where did input and output occur? Where were the lists of guessed and unguessed letters
updated? Where were the comparisons that determined if the user won or lost?

After obtaining a basic understanding of the executable’s function, students searched for
malicious segments to eliminate before implementing their own modifications. The bulk of the
students’ time was spent in this phase. They primarily used IDA’s debugger to search through
the disassembled executable for malicious code. The students would set a breakpoint at differ-
ent points of interest and step through the program, following along simultaneously in Bina-
ryNinja, to observe how the program behaved. Students inserted comments in the code about
new patterns and functions that they discovered. Upon finding suspect segments of code, stu-
dents modified the contents of the executable and observed the effects to see if the problem was
eliminated. They reverted back to the previous version of the executable if the modifications
had unexpected or undesired results.

Finally, students implemented and tested their additional modifications. In the previous
stage, students had been deliberate in taking notes and discussing various features to alter.
Therefore, they simply explored the different ideas they liked most. In BinaryNinja, once the
executable was altered, the graphical view would immediately reflect the result of the alteration
on the program’s flow. Students altered the executable, confirmed that the alteration was the
one desired, and then tested the alteration. The implementations were tested both by running
the executable and by using the debugger in IDA to analyze the values stored in memory and in

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 4



5

stack registers.

4 Capabilities of various online tools
When reverse engineering the executable, 4 categories of tools prove particularly useful:

1. Reverse engineering platforms

These are tools that are most distinctly characterized by providing a direct interface be-
tween the user and the disassembled code at its lowest level. The range of features offered
by various platforms differs widely from platform to platform. Features may include,
among others, a built-in hex editor, the ability to immediately see live disassembly, both
graphical and text views of the code, and a debugger. These features aim to help elucidate
the function of the code, assisting the user to better understand and explore the function
and flow of both individual segments of the code and the executable as a whole.

2. Decompilers

Decompilers are computer programs that construct high level source files from an exe-
cutable. They effectively reverse the work the compiler does when it converts a source
file to an executable. Examples of situations in which a decompiler may be helpful include
debugging programs or recovering a lost source code archive. Different decompilers sup-
port converting source code compiled from different high-level languages. As compilers
undergo more frequent changes, picking a recent and up-to-date decompiler is becoming
increasingly important.

3. Hex Editors

Upon opening an executable in a reverse engineering platform or IDE, what may appear
as a series of assembly language instructions is ultimately binary data. Hex editors are
programs used to alter the exact contents of that data. Hex editors typically represent the
binary content of a file in hexadecimal format and usually display in parallel the ASCII
character representation of each byte of code. Hex editors have a variety of uses, including
correcting corrupted data and changing or adding instructions to a file without having to
recompile the file.

4. Virtual Machines

Virtual machines are independent instances of operating systems running on top of host
operating system. Virtual machines are useful for running executables to test if the exe-
cutable is malicious because the damage done by a malicious file is isolated to the virtual
machine. If a virtual machine gets infected or corrupted by a malicious the user can
simply destroy the instance and create a new one again.

Below is a table that summarizes different tools that were options for completing the task and
challenges students had in utilizing them.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 5



6

Tool Strengths Weaknesses Use within Analysis
IDA Demo Version

https://www.hex-
rays.com/products/ida/

Debug, Disassem-
ble, Graphically
flowchart code

Save changes, Re-
port errors in disas-
sembly, Allow com-
ments in disassem-
bly

Debugging disas-
sembly, Viewing
disassembly, Find-
ing object code in
hex dump

BinaryNinja Demo Version

https://binary.ninja/

Save changes to exe-
cutable, Graphically
flowchart disassem-
bly, Report errors in
disassembly

Debug, save com-
ments, allow mul-
tiple viewing win-
dows

Viewing disassem-
bly, editing and
saving the object
code, finding stack
usage errors

VirtualBox

https://www.virtualbox.org/

Allow instances of
different operating
systems to be booted
up

Install guest addi-
tions to allow full
screen mode

Creating Ubuntu,
Windows Server,
and Windows 10
instances to run
executable on

Snowman

https://derevenets.com/

Easy to install and
run

Decompile Decompiling
(briefly)

Boomerang

http://boomerang.sourceforge.net/

N/A Difficult to install Did not complete in-
stallation to use

WINE

https://www.winehq.org/

Supposed to allow
windows programs
to run on top of other
operating systems

Difficult to in-
stall, could not
located DLL files in
directory

Did not complete in-
stallation to use

Table 1: Tools used and explored for this analysis.

5 Discovery: Functionality of the project
The students concluded that the executable was essentially a Trojan horse. Although it

appeared to be a hangman game, it conducted unauthorized, malicious behavior. It generated a
word of random length, composed of a random set of letters. The user is then prompted to enter
a guess. If the letter guessed was not in the word, the message “Not in word” was printed to
the screen, the guesses-left counter was decremented, and the user was re-prompted to enter a
guess. If the guess was correct, the console displayed “Good guess !!”, the guesses counter was
not decremented, and the user was re-prompted to enter a guess. As the user proceeded to guess
letters, the console window displayed updated lists with the user-guessed letters, unguessed
letters, and letters correctly guessed in the word. If the user entered a letter that they had
guessed before or if the character entered is not a lowercase alphabetic letter, the user was re-
prompted to enter a guess. If all the letters were guessed correctly then the message “You won
!!” was output to the console; otherwise the message “You lost” was output. In addition to this

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 6



7

basic functionality, the executable had several malicious behaviors, which are detailed later in
this paper.

The code contained six challenges for students to discover and mitigate. Below is the de-
scription of the challenges from the perspective of the students’ analysis:

1. Exhaustion of Heap

Directly prior to outputting the unguessed letters to the screen, the executable would
push the value 17D78400h onto the stack. Then, a sub-function call was entered that
requested the system to dynamically allocate 17D78400h bytes worth of memory. Thus,
within three to four guess entries from the user, the amount of memory on the heap would
be exhausted and an error would be thrown. Figure 5.1 displays this section of the exe-
cutable with students’ comments denoting the key lines involved in this error.

Figure 5.1: Screen clipping of code that causes the heap to be exhausted.

2. Lag time error

Upon entering an incorrect guess, there was a noticeable delay in the game play. The
lag was caused in a function that was supposed to return -1 if the guess was incorrect so
the guesses counter would be decremented. This function was only called if an incorrect
guess was entered. The lag was created because in the function there was a loop that iter-
ated 7530h times, thus causing a noticeable delay in the game. Figure 5.2 and Figure 5.3
display the original executable function calls with comments.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 7



8

Figure 5.2: The function sub 411dd4 calls another function within itself that contains a loop
that executes thousands of times, causing a lag in the game play.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 8



9

Figure 5.3: Screen clipping of the subfunction call in sub 411dd4 that contains the loop the
causes the lag time error.

3. Stack error upon guessing the letter ‘a’

The executable crashed immediately if the letter ‘a’ was guessed. Figure 5.4 displays
the section of the executable that checks if the letter ‘a’ was guessed. Just before the
comparison with the letter ‘e’, there is the instruction cmp eax, 0x61. As mentioned before
the byte loaded into eax by the instruction movsx eax,byte[ebp-0x8] is the character that
was just entered by the user. That value is compared against the value 0x61h, which is
the ASCII character value for ‘a’. As can be seen, from the conditional jump following
the comparison if the letter was not ‘a’, then the section of code that throws a stack error
is skipped.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 9



10

Figure 5.4: Screen clipping of code where the executable checks if the letter ‘a’ or the letter ‘e’
was guessed.

4. Malicious text file creation

If the user guessed the letter ‘e’, the executable created 100 text files all with the same
content (“Hey there”) and saved these text files to the desktop of the machine on which it
was run. Figure 5.4 is an image of the section of code that includes the instruction used to
check if the letter ‘e’ was guessed. The comments in the image denote which instruction
performs this check.

The byte loaded into eax by the instruction movsx eax,byte[ebp-0x8] is the character
that was just entered by the user. That value is compared against the value 0x65h, which
is the ASCII character value for ‘e’. As can be seen, from the conditional jump following
the comparison if the letter was not ‘e’, then the section of code that creates the text files
is skipped. Otherwise, the section of code displayed in Figure 5.5 is entered.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 10



11

Figure 5.5: Screen clipping of code that would be executed if the letter ‘e’ was guessed.

The first statement places the value 101 in the address referenced by the value in ebp-
130. This address is later dereferenced and its value placed in eax (not shown in image
above), which is used as our counter. The comparison instruction cmp dword [ebp-0x13],
compares the value that is later placed in eax to 0x64h, which is 100; this is the compari-
son that controls the creation of the text files. If the counter is less than 100, another text
file is created and placed on the user’s desktop. Notice that above the comparison, the
instruction call dword[GetUserName@IAT] retrieves the username. The rest of the code
displayed is involved in retrieving the path to the user’s desktop. At the bottom of the text
file loop, eax is decremented, and its new value is stored in the address referenced to by
ebp-0x013c, which is the same address that contains the value checked in the comparison
for the loop. Figure 5.6 displays the set of instructions used to decrement eax and place

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 11



12

its value in the address at ebp-0x013c.

Figure 5.6: Screen clipping of instructions used to decrement eax and store the updated value.

5. Delete error

Near the end of the program a “delete” error occurs. This error is generated in the
fourth from the last called function (Figure 5.7). Stepping into another function within
the outer function reveals code with two flows of execution. One flow of execution frees
memory correctly, the other frees memory incorrectly. The original program code was
designed to always flow through the code that frees memory incorrectly, generating a
“delete” error (Figure 5.8). The code causing the flow of execution is an and statement
with a result that is never zero followed by a jump statement that goes to the correct code
only if the result of the ”and” statement is zero. Additionally, the ”and” statement is
never zero because it “ands” the binary representation of 2 and 3. The result of which is
always the binary representation of 2 (Figure 5.9). After analyzing the code producing
a “delete” error, students determined that the code attempts to free memory it has not
allocated. Because the program is trying to free memory it is not authorized to free, an
error describing this behavior is thrown.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 12



13

Figure 5.7: This image identifies the location of the function in main that generates a “delete”
error.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 13



14

Figure 5.8: This image identifies the function where the “delete” error is generated. This image
also displays the value 3 being passed to the function as a parameter, which is integral to the
error being generated.

Figure 5.9: This image displays the and statement that causes the program to always flow
through the code that generates the “delete” error.

6. Misspelled output

There were several misspellings in the original executable, so that the console would
display messages such as “Unquessed letters” or “Enter you guess”.

6 Design: Modifications to malicious segments and function-
ality

There were several ways students tried to alter the code. Since BinaryNinja allowed inline
editing in the graphical view with live disassembly, the most simple and preferable changes

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 14



15

to alter the program structure entailed editing existing instructions, such as turning a condi-
tional jump into an unconditional jump. This prevented students from having to worry about
overwriting surrounding object code that they did not wish to alter.

The students also explored altering the code by creating their own function and making a
call to that function. In the executable, between the existing functions were segments that did
not contain object code. In BinaryNinja, right-clicking on one of these segments would cause a
drop-down menu to open, one of the options being ‘Create Function Here’. Once the function
was created, instructions could easily be entered by switching to the disassembly graph view,
clicking on a specific instruction, and selecting ‘Edit Current Line’. Then, students simply
typed the instruction they wanted to insert in assembly language, and those instructions were
automatically converted to object code. Once they had finished editing our function’s contents,
they could call the function from any part of the code.

The final way students explored editing the executable entailed figuring out the object code of
the instructions they wished to introduce and editing the hexadecimal information of the object
code directly. This method was used most often if they wanted to explore inserting only one
or two lines of object code. They would figure out the encoding for the commands and locate
exactly where in the executable file they wished to insert these commands. They would then
shift all the bytes of object code that would follow our inserted commands down so that once
they typed in their new commands, none of the previous data would be overwritten. Finally,
they manually entered the new instructions. Regardless of the different approaches used, after
any significant alteration or advancement was made, the other project partner was notified of
the alteration and the new executable was made immediately available.

7 Implementation
This subsection contains a list of the problems they discovered (as described in the previous

section) followed by a description their initial exploration of the executable revealed that it
functioned as a hangman game with some malicious side effects, including stack usage errors
and a large number of files being created and placed on the user’s desktop. Of course, they
aimed at further investigating any other malicious side effects and eliminating harmful behavior.
Students also initially planned to alter the program so that a player would lose two guesses if
they guessed a vowel not in the mystery word.

1. Exhaustion of Heap

In order to nullify this behavior, students simply commented out the four instructions
that performed the malicious actions. Figure 7.10 is an image of the modified executable.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 15



16

Figure 7.10: Screen clipping of code modified to prevent the heap exhaustion error.

2. Lag time error

To nullify this behavior students replaced the call statement to this loop by moving -1
to eax, so that the same outcome would result without the time delay. Figure 7.11 is an
image of our modified code.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 16



17

Figure 7.11: Screen clipping of the code modified so that the lag time error does not occur.

3. Stack error upon guessing the letter ‘a’

To eliminate this malicious behavior, they altered the comparison made, so instead of
comparing the character in eax to 0x61 (‘a’), it compares to 0x40 (‘@’). Since the code
before this function already checks that the character entered by the user is a lowercase
alphabetic character, the jump will always be performed. Alternatively, the students could
have removed the comparison or replaced the conditional jump with an unconditional
jump to another section of the executable; however, they chose to make this alteration so
that they could demonstrate different solutions to this problem. It is important to note that
if solely this alteration was made, it would be possible that a stack error be generated if
the code preceding this segment of the executable did not guard against the ‘@’ symbol
being entered as a valid guess. If the guard against special characters was removed and
the user entered ‘@’ then a stack error would result just as happened before the alteration
when the character ‘a’ was entered. Figure 7.12 displays the executable with the students’
alteration as well as their comments on the executable’s behavior after they implemented
this alteration but before they introduced any other alterations.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 17



18

Figure 7.12: Screen clipping of code where the letter ‘a’ would trigger cause a stack error to be
thrown.

4. Malicious text file creation

The students resolved this problem by making an unconditional jump to the code fol-
lowing the portion of the executable that creates the text files. Figure 7.13 displays the
executable flow after this change is implemented.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 18



19

Figure 7.13: Screen clipping of program flow once the unconditional jump was implemented.

Significantly, the comparison, cmp eax, 0x40, no longer has an effect since an uncon-
ditional jump is made. Therefore, regardless of what character is guessed by the user, the
displayed flow of the program will execute. As a result, notice that there is no longer a
branch in the disassembly. The comparison instruction is retained simply to demonstrate
that it has no effect.

5. Delete error

To prevent the program from freeing memory it had not allocated, the students mod-
ified the ”and” statement so the result of the statement is always zero. They instruct the
statement to “and” the value of 3 and 0, the result of which is always 0. This causes the
subsequent jump statement to always go to the code that frees memory correctly. This
modification ensures the malicious code is isolated and that memory is properly freed at
the end of the program. Figure 7.14 displays the code after this modification.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 19



20

Figure 7.14: The and statement now results in the ZF being set which causes the program to
always flow through the correct code.

6. Misspelled output

Students fixed any intentional typos in the prompt calls.

After making these changes, the students re-considered their original plan for additional
changes they wished to implement.

One of the ideas they considered was finding the word guess counter and modifying its
behavior-either by changing the value of the counter or changing when it is decremented- so the
player has an almost guaranteed chance of guessing the word. They determined that given the
word typically ranges from 8 to 11 characters long, and the player already has 15 tries to guess
the word. The counter is simply a value pushed onto the stack and then referenced repeatedly to
decrement the counter as the user makes guesses. Students could repeatedly reset this counter to
15 (or another value) inside of one of the functions or eliminate the decrement of this value upon
the user entering a guess, but they didn’t want to eliminate the possibility of losing. Therefore,
they decided to leave the counter as it was.

Another idea considered was to prevent the console window from closing immediately after
the user either won or entered their last valid guess. They explored various ways of trying to
accomplish this task, including trying to call system(“push”) and trying to prompt the user to
press a key to signal they were finished looking at the result of the game. Due to the structure of
the executable and the data in the executable, students were unable to implement this alteration.
However, the exploration of possible implementations proved interesting.

The students tried three different methods to try to get the system to pause. The first was
trying to make the function call system(“pause”);. This required placing the string “pause”
somewhere in the executable, pushing the address of the first byte of this string onto the stack,
and then calling the system() function with “pause” as its parameter. The students were able to
place the string in the executable and push its address onto the stack. The difficulty came in
trying to make the call to system(). They made a very simple program in Visual Studio that was
a main function that only contained system(“pause”). They then tried to use the disassembled

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 20



21

object code for the system() call to perform the call in the executable. However, this did not work
because the object code created for the system call was created based off of values retrieved in a
long series of previous function calls. Unfortunately, they could not figure out how to correctly
call the correct library code from the executable.

The next method the students tried was trying to insert a set of instructions that would
essentially print the message “Press a key to continue...”, and then wait for the user to enter
a key, which would be retrieved using cin. Again, they had no difficulty placing the string in
memory or finding a spot to store the character captured by cin. They did struggle, however,
in calling cin and cout to display the message and capture the character. Simply copying the
object code from a previous segment of the executable would not work because the address to
the system used by cin and cout will change from machine to machine, and thus cannot be hard
coded, which is what results from simply copying the object code from previous cin and cout
statements.

Finally, students tried to jump to the portion of the executable beneath “Enter your guess”
that reads in the character entered by the user, and then jumping back to the end of the executable
so the program exits once the user types another key stroke. The difficulty came in trying ensure
that the executable would only skip to the end of the function if the final outcome of the game
had finally been determined. They spent time exploring the possibility of storing a boolean value
in memory in the executable that would be set only if the final outcome had been determined and
then checking that value to determine if it should jump to the end of the executable or not. This
idea seemed practical and may have been accomplished; however, there was not enough space
between the instruction and function calls in the executable to insert the required instructions.
Thus, this too proved a dead end.

There is one other option they considered briefly for causing the executable to pause. Stu-
dents considered adding in a function that iterated over a loop a large number of times, which
would cause the executable to lag for a brief amount of time before proceeding with the final
instructions and closing the console window. However, they decided they didn’t want to pur-
sue this option because the performance across different machines would not be consistent. A
slower machine would pause for a longer amount of time than a faster machine. They wished to
find a solution that would have consistent performance across different platforms and hardware.

Finally, the students settled on implementing this additional change: they created an infinite
loop that displays the text ‘You Lost!’ to the console window if the user is unsuccessful in
guessing the word. There were several reasons why they decided that this was an additional
change they wished to implement. One reason is that it serves as additional motivation for
the user to correctly guess the randomly generated word. Another reason is that it allowed
the students’ to demonstrate their knowledge and understanding of how the original executable
functioned while demonstrating how an executable could be modified to introduce malicious
behavior. They introduced an unconditional jump that could only be reached if the player
lost; this required understanding of both the original executable’s flow and of how to edit the
executable’s contents.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 21



22

8 Conclusions
For both teammates, this project was the first experience the students had reverse engineering

a program from a binary executable. To succeed they had to discover what tools were available,
what methods to use to understand the program, what new low-level instructions meant, how
to alter the executable, and more. This learning process is filled with struggles and triumphs.
Here are some of the lessons learned by the students that may be relevant for future reverse
engineering projects.

1. Find a decompiler. For this project, students never utilized a decompiler to understand
the code. A decompiler was not necessary because the complexity of this program was
minimal. However, had the code been more involved, the higher level understanding that
a decompiler provides would be necessary to analyze the program. Students did not find
a suitable decompiler, but they did learn that a decompiler must be updated constantly
to remain current with modern compilers and that there are plugins for decompilers that
are compatible with common reverse engineering tools. The decompiler that is compat-
ible with IDA Pro is a very attractive option although it would require purchasing the
professional version of IDA.

2. Use the debugger in IDA Demo. If used intelligently, the debugger can significantly help
students learn about how the unknown program functions. Additionally, by observing the
registers, stack, and memory while debugging the program students can learn specifically
how the program works. While stepping through the code, once errors are identified the
debugger can help identify how the errors are caused and why they negatively impact the
program.

3. Writing and calling assembly in the executable is manageable, but calling library func-
tions or any eternal code is not. Students spent a combined 10 hours for this project trying
to call code that allows the user to enter a character and still failed. To their knowledge
the flow of code was set up correctly, they jumped to the code they wanted to call and then
jumped back to the main program code when the call was complete, but the call to the cin
method did not work. They tried to understand how the offsets worked and where the cin
code was located in the file, but they could not get the code to execute. A deeper under-
standing of assembled code and executable files is required to understand the behavior of
various library functions.

4. Understand the program flow of the main program. In the initial exploration phase of this
project students spend several hours stepping into functions that were misleading rabbit
trails. Once they were finally adept at identifying code that was relevant to the control flow
of the main program, their time trying to understand insignificant code was minimized.
This helped them streamline the process of understanding what kind of program they
were analyzing and how to locate the errors.

5. Document all knowledge gleaned about the mystery disassembly! There are too many
details, functions, and code in a disassembled executable file to remember everything.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 22



23

Documenting all new knowledge gleaned from analysis is essential to minimizing time
spent re-tracing over the same code again. Additionally, when analyzing code it is easy
to work for several hours in a flow where one’s short-term memory is well tuned to the
program. However, upon returning to the program the next day, it is often difficult to
recall those details. For this reason it is very important to continuously document the
current state of analysis to save time.

6. Students should start early and front-load the work. The sooner students understand the
disassembly of an executable they are trying to reverse engineer, the sooner they will
make measurable progress. It is important to dedicate sufficient time upfront in their
project timeline to get this important part of the project complete. All other aspects of the
project depend on understand the code so having this analysis done will allow students
to begin dividing up the subsequent work and make progress in a more efficient manner.
For example, once the team grasped the main program control flow of the executable they
were given, they divided up which errors each team member would correct and quickly
worked to complete the given tasks.

9 Future Work
Reverse software engineering tools have become advanced enough that just a few layers

of program obfuscation do not provide a sufficient challenge. With the release of the open-
source NSA software Ghidra in April of 2019, reverse engineering has been simplified. Ghidra
packages all the typical reverse engineering tools such as disassemblers, decompilers, binary
editors, and more, allowing many students to rely on Ghidra alone to finish the class project.
To encourage the use of more tools and more research, further layers of obfuscation that take
advantage of the weaknesses of Ghidra will need to be developed into future class projects.

Malicious elements of future projects should be deeper and more complex. Using Ghidra
and other modern reverse software engineering tools, students were able to find most of the
malicious/obfuscating elements within the Fall 2019 project and quarantine them with simple
binary code editing. In future iterations of the project, multiple malicious elements alongside
obfuscation of those malicious elements will be necessary to provide a greater challenge to
students.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 23



24

10 References
[1] W. Gragido and J. Pirc, “Seven Commonalities of Subversive Multivector Threat,” (Boston),
2011, 153 –175, doi: https://doi.org/10.1016/B978-1-59749-613-1.00009-1,
http://www.sciencedirect.com/science/article/pii/B9781597496131000091.
[2] R. Brooks, S.B. Yun, and J. Deng, “ Cyber-Physical Security of AutomotiveInformation
Technology,” ed. Sajal K. Das, Krishna Kant, and Nan Zhang (Boston: Morgan Kaufmann,
2012), 655–676, ISBN: 978-0-12-415815-3, doi: https://doi.org/10.1016/B978-0-12-415815-
3.00026-1, http://www.sciencedirect.com/science/article/pii/B9780124158153000261; Alexan-
dre Gazet et al.,Chapter 5 - Obfuscation(Wiley, 2014), 267 –340,ISBN: 978-1-118-78731-1.
[3] C. Cohen, “Semantic Code Analysis for Malware Code Deobfuscation,” 2013,
https://insights.sei.cmu.edu/sei blog/2013/07/semantic- code- analysis- for- malware- code- de-
obfuscation.html.
[4] M. Sewak, S.K. Sahay, and H. Rathor, “An investigation of a deep learning based malware-
detection system,” 2018.
[5] S. Chaki, “Using Machine Learning to Detect Malware Similarity,” 2011,
https://insights.sei.cmu.edu/sei blog/2011/09/using- machine- learning- to- detect- malware-
similarity.html.
[6] D. Gavrilut et al., “Malware detection using machine learning,” vol. 4 (November 2009),
735 –741, doi:10.1109/IMCSIT.2009.5352759.
[7] N. Peiravian and X. Zhu, “Machine Learning for Android Malware Detection Using Per-
mission and APICalls,” in2013 IEEE 25th International Conference on Tools with Artificial
Intelligence(2013), 300–305.
[8] E. Laspe and J. Raber, “Deobfuscator: An Automated Approach to the Identification and Re-
moval of Code Obfuscation”, 2008, https://www.blackhat.com/presentations/bh-usa-08/Laspe
Raber/BH US 08 Laspe Raber Deobfuscator.pdf.
[9] “Ghidra,” National Security Agency, 2019, accessed April 28, 2019,
https://www.nsa.gov/resources/everyone/ghidra/.
[10] C. Cimpanu, “NSA to release a free reverse engineering tool,” 2019,
https://www.zdnet.com/article/nsa-to-release-a-free-reverse-engineering-tool/.
[11] “Binary Ninja: Home,” Binary Ninja, 2019, accessed March 25, 2019, https://binary.ninja.

Proceedings of the 2020 ASEE Gulf-Southwest Annual Conference
University of New Mexico, Albuquerque

Copyright c©2020, American Society for Engineering Education 24


