AC2011-1070: A UNIFIED FRAMEWORK FOR REMOTE LABORATORY
EXPERIMENTS

Claudio Olmi, University of Houston

Claudio Olmi is currently pursuing a Ph.D. in Electrical Engineering at the University of Houston. He
received his B.S. and M.S. degree in Computer and Systems Engineering from the University of Houston.
He specializes in System Integration of hybrid Mechanical and Electrical systems with focus on Software
Programming, Analog and Digital Hardware Design, Internet Technologies for Remote Operations, Dig-
ital Controls, and NI LabVIEW Programming. Olmi worked in projects using Smart Materials applied
to Civil and Mechanical Structures for in laboratory and remote operations from where he published 2
journal papers and several conference presentations. He is a student member of IEEE.

Bo Cao, Smart Materials and Structures Laboratory
Han Wang, University of Houston

Han Wang is currently a PhD student of Mechanical Engineering in University of Houston. His research
interests are Intelligent Controls, Nonlinear Control Systems and Modeling, Fault Detection and Isolation,

and Control of Smart Materials.

Xuemin Chen, Texas Southern University
Gangbing Song, University of Houston

(©American Society for Engineering Education, 2011

T'6TT 22 abed

A Unified Framework for Remote Laboratory Experiments

Abstract

Developing a remote experiment requires knowledge in hardware and software. Nowadays, most
of the great engineering experiments are not transformed into an online experiment due to the
lack of complete and easy to use software solution. In this paper, the progress of developing a
unified framework for next generation remote experiment laboratory is presented. The
framework allows using the latest Internet technology, Web 2.0, to provide an interactive user
interface for the client computer that does not need any additional software to be installed.
Moreover, the dynamic interface is compatible with most of the web browser software and most
of the operating systems currently available. The use of a pure JavaScript environment for the
client interface provides a wide compatibility with current technologies. On the other hand, a
proxy server was added between the experiment and the Internet client to hide the remote
experiments from the Internet. The proxy filter route the data exchanged with the available
experiments. As a result, the number of experiments behind the server could grow exponentially
without changing the way or the Internet address of the collection of experiments.

Introduction

Laboratories have always been an essential part of engineering education. Even throughout
secondary education, concepts that are taught through lectures have been reinforced by hands-on
experience in laboratory experimentations. These experiments allow students to experience the
scientific method by following the classical model of using their own experience, forming a
conjecture, deducing a prediction from that hypothesis, and affirming the consequent™*”.

Conventional engineering laboratories allow students to perform learning activities using their
visual and tactile sensory system compared to a virtual laboratory, where only the visual
perception is trained®. Unfortunately, the cost of setting up and maintaining a physical laboratory
is becoming an obstacle for school administrations. A mid point solution to the aforementioned
issue is grzle use of remote laboratories that allow students to perform real experiments over the
Internet™.

Remote laboratory experiments are defined as real experiments conducted by Internet users.
These experiments use real instrumentation and components at a different location than where
they are being controlled by the user. One of the popularly deployed technologies today for
remote panel over the Internet is National Instrument’s Laboratory Virtual Instrument
Engineering Workbench (LabVIEW) software*®®, Despite the effectiveness and rapid
prototyping of the software system, it has been plagued by software issues from LabVIEW’s
runtime engine. The runtime engine that requires administrator privileges cannot be installed on
any public computer by normal users force students to use their own computer at home and
therefore limits the time availability to the students. Furthermore, any updates to the LabVIEW
front panel can result in version errors in the client due to the non-compatibility of the runtime
engines. Recently, LabVIEW integrated a new feature to interact with the experiment Virtual
Instruments by using RESTful web services. REST (Representational State Transfer) provides a

2'6TT 2z abed

lightweight protocol accessible to a wide variety of clients. The architecture does not require
complex message passing and provides a simple interface for user to begin using Web services in
LabVIEW. However, it requires the client interface to be developed using different technologies.
In addition, as the number of remote experiments increases, the software is not capable of
handling multiple users with multiple resources.

Methodology

The primary goal of the developed unified framework is to allow the set up of a distributed
network of online experiments that works in any Internet browser without the need of any extra
plug-in. The project includes three sections: client side, web server, and experiment server.
Figure 1 shows the simplest remote laboratory with a single online experiment. Multiple
experiments would connect to the same local web server. The client side browser loads a Web
2.0 interface from the web server that is specifically designed for the running experiment. When
the client is ready to run the experiment, the user starts the connection to the web server by
requesting the use of the experiment. Afterward, the web server sends the “Start” command to
the experiment server. The latter sends back a packet containing the last data array generated by
the experiment internal sensors, actuators, and controls. The received data array is put into a
database containing all the live data corresponding to the specific experiment. Finally, the client
periodically requests the live data from the web server. The database acts as a communication
buffer between experiment and client.

Client Web | Experiment
Browser Server g Server

A

Figure 1: Simplest remote laboratory network

To allow the client browser to update the web page without refreshing the whole content, a Web
2.0 strategy was used. The unified framework was built by multiple component levels from the
client to the experiment server.

Table 1: Framework levels and their corresponding technologies
Level Name Technology/Protocol

1 | Client —Web Application JavaScript, XHR

2 |Data Protocol — Low Speed | TCP Sockets

3 | Server - Web Service WSGI, REST
4 | Data Protocol — High Speed | TCP Sockets

5 |Experiment Server LabVIEW

Table 1 above shows the technology/protocol that is currently being used in the developed
framework. The first level provides the user interface, or Web Application, to the client

€'6TT 2 abed

computer using a standard web browser running JavaScript functions to pull and display
information from the server. To test all the functions and the initial data protocol specification
between client and server, the software was initially written in .NET C# for rapid prototyping

and simplified debugging of the interface. This front end was paired with the server side
software also written in .NET C# capable of retrieving and saving information on a local MySQL
database. After the data protocol implementation reached a stable point, the client side software
was ported to JavaScript, while the server side was being rewritten in Python scripting language.
Although the data protocol scheme has not being finalized, it uses three main technologies: XHR,
WSGI and REST.

XML HTTP Request (XHR) are a set of Application Programming Interface (API) functions,
available in most web browsers, capable of initiating an HTML request from the JavaScript
running on the client computer, and update the Document Object Model (DOM) in real time
without the need of reloading the web page. Thus, it provides a method to continuously updating
tables and/or plots on the web page dynamically. This technology is used at level 1. Moving to
the server side at level 3, Web Services Gateway Interface (WSGI) is an interface between the
web server core software and the web application that allows building web services faster then
the old Common Gateway Interface (CGI) using Python language. WSGI does not provide a
protocol but just a link to the underlying core software for speed.

Lastly, Representational State Transfer (REST) provides a methodology for handling packets of
data from the web application. This technology is at the base of the data protocol. REST uses
standard HTTP methods, GET, POST, PUT, and DELETE, to interact with the web application.
Each method, called verb in REST, generates a well understood action on the server. As an
example, when the web application sends a POST method with embedded data, the web service
will interpret the method as a request to UPDATE data.

At the fifth level, the experiment communicates with the web server through LabVIEW.
LabVIEW will acquire data from a local experiment and parse this data into an array. This array
will be saved and sent to the web server through a TCP socket, which will asynchronously relay
this information to the user. The user interface will then interpret the data and update part of the
webpage accordingly to display the data.

Results

In this paper, the LabVIEW-based Remote Nano Fiber Beam experiment was modified to
connect to the newly developed framework. The initialization of the experiment server consists
of a TCP socket listening for the web server “Start” command. When the command arrives, the
experiment server starts the main program loop that consists of experiment initialization, control,
and collection of ten data points acquired at a frequency of 100 Hz. Every ten loops, the data is
sent back to the web server. All the parameters can be adjusted by the experiment developer. The
experiment will run continuously until a “Stop” command is received. These procedures
constitute a complete data transmission cycle. The connection between the experiment server and
the web server closes when the experiment is finished. Figure 2 shows the flowchart of the
aforementioned cycle with the LabVIEW block diagram.

v'61T 22 abed

[True Vt
0000000000 000000000000000000000000
TCP Listen
[Whtite:
'] IR B
e = e
TCP RE‘ﬂd Activate ! |_5|
[Experiment wI |
Exp. Mo 7
,: 0000000000000 000000000000000000000
Done?
stop 2

Close connection

Experiment Main

Save data into array

Transmit data and
clear array

L |
|

Figure 2: Flowchart logic of the LabVIEW program with the LabVIEW block diagram.

On the client side, the interactive media-rich interface is first loaded from the remote laboratory
web site located in the web server. The client starts up the web page using any modern web
browser such as Opera, Apple Safari, Mozilla Firefox, Internet Explorer, and Google Chrome.
As long as JavaScript is enabled in the browser, no plug-ins or add-ons will be necessary to run
the code embedded in the web page.

0.00 Displacement
— PID gai!
2-4 = - £
proportional gain (Ke)| 150,000 =
1= integral time (Ti, min) p.000
0- Frivative time (Td, min) 1.000
i
Sensorbiss Setpoint ﬂf;"“’"m
-2 b 4 7
E jo §0 :
1 ke, S
£, : : o
E N J Duty cycle number 202
o Jo <
E i 10
0=
& Manual / Feedback
= _’
tr]
| Control on Duty Cycl
2 e S
Frequency of Duty Cycle
A ;
9~ (ﬂo rjo
-10-1 [l = ‘Oﬂse'l
0.0 20 o
. q'i
Data Point 3
How to Record Data
Set number of seconds you | Elapsed Time Time Target (s) n
want to record data. Then, l ;H‘m_‘ op
B s

|
Figure 3: Original LabVIEW Front Panel of Nano Beam Experiment

When the user loads the web page in the beginning, the user interface is not currently connected
with the web server. Figure 3 shows the original LabVIEW interface front panel, while Figure 4
shows the new interface. Upon pressing the “Start” button located on the JavaScript front panel,
the embedded code initializes a connection with the web server that verifies if the user is

G'6TT 2¢ abed

authorized to use this connection. Upon confirmation, the web server sends back to the client the
acknowledgement and sends the “Start” command to the experiment. The JavaScript interface
includes a timer that requests the live data formatted in JSON from the web server every half
second. The user may choose to disconnect from the experiment at any time using the “Stop”
button that stops the JavaScript timer and the experiment data acquisition.

(Nano Beam Experiment

Live Data Webcam

2.00

0.50

-1.00
-2.50

-5.50

Dizplacement (mm})
b
[=]
[=]

-7.00

-8.50

-10.00
0.00

0,10 0,20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Time (zec)

How to Record Data Time Experiment Settings

Set the number of seconds you want to record | Elapsed Time | Sensor bias Setpoint Duty Cyde Mumber
data. Then press record, data will be recorded.

0 0 0 0

Time Target Frequency Amplitude Offset
Record Stop
10 |sec 0 0]

Figure 4: Interactive Media-rich JavaScript Experiment Interface

Table 2: Implemented REST methods for the retrieval of experiment and user data.

Client Request Server Response
Resource Parameters Method Action Response Data
Experiment
lexp lexpID GET Gets all experiment Returns all experiment information
information JSON
User
luser /userID GET Gets all user information Returns all user information JSON
Client Request Server Response
Resource Parameters Method Action Response Data

Experiment Data
/expLive /[explD GET Get Data Array from Exp. Returns Data Array JSON

lexpLive /explD POST Case: {1-Start, 0-Stop} Returns acknowledgement
luseriD Update database.
/active Inform Experiment.

9'6TT 2¢ abed

The web server code was written using Python language scripting for rapid prototyping while
maintaining a wide compatibility with server technologies. Table 2 shows the implemented
REST methods for retrieving data from the online experiments. Each method allows the client
program to request the corresponding data from the web server. The script serves the client
interface. On the other hand, a PHP script allows the experiment server to save the live data in
the respective web server database table.

Conclusion

The existing LabVIEW-based Nano Beam experiment at the University of Houston was
converted to use the newly developed unified framework based on open and freely available
software. The client JavaScript interface was developed to replicate the LabVIEW interface
behavior. On the other hand, the LabVIEW experiment was modified by the simple addition of a
start and stop sequence with the capability of forwarding the captured data over the network.
Finally, a web server was setup to allow communication between the client and the experiment
while maintaining a high level of security.

This unified framework for remote laboratory experiments was designed to allow performing
online experiment from any computer and with no specific requirements. Anyone with an
Internet connection and access to a web browser can interact with and control a remote
experiment from anywhere. Users and experiment developers no longer have to worry about
version problems or updates, since all the interfaces do not use proprietary technologies.

Acknowledgement and Disclaimer

This work is partially supported by the National Science Foundation under Grant Numbers EEC-
0935208, EEC-0935008.

Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Bibliography

1. Ambrose, S. A, & Amon, C. H. (1997). Systematic design of a first-year mechanical engineering course at
Carnegie Mellon University. Journal of Engineering Educations, 173-181.

2. Boehringer, D., Jeschke, S., & Richter, T. (2009). Lila - A European Project on Networked Experiments. Paper
presented at the Sixth International Conference on Remote Engineering and Virtual Instrumentation.

3. Corter, J., Nickerson, J., Esche, S., & Chassapis, C. (2004). Remote vs. Hands-On Labs: A Comparative Study.
Paper presented at the 34th ASEE/IEEE Frontiers in Education Conference.

4. Duro, N., Dormido, R., Vargas, H., Dormido-Canto, S., et al. (2008). An Integrated Virtual and Remote Control
Lab: The Three-Tank System as a Case Study. Computing in Science & Engineering, 10(4), 50-59.

5. Felder, R. M., & Brent, R. (2005). Understanding Student Differences. Journal of Engineering Education, 21(1),
166-177.

6. Jeschke, S., Richter, T., & Sinha, U. (2008, Oct. 2008). Embedding Virtual and Remote Experiments Into a
Cooperative Knowledge Space. Paper presented at the 38th ASEE/IEEE Frontiers in Education Conference,
Saratoga Springs, NY.

/'6TT 2z abed

Jing, M., & Jeffrey, V. N. (2006). Hands-on, simulated, and remote laboratories: A comparative literature
review. ACM Comput. Surv., 38(3), 7.

Olmi, C,, Song, G., & Mo, Y. L. (2007). An innovative and multi-functional smart vibration platform. Smart
Mater. Struct., 16, 1302-1309.

Song, G., Olmi, C., & Bannerot, R. (2007). Enhancing Vibration and Controls Teaching with Remote Lab
Experiments. Paper presented at the Proceedings of the 2007 ASEE Annual Conference & Exposition.

8'6TT 2 abed

