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Finite Element Active Learning Module Assessment of Student    
Improvement, Learning Styles, Gender Differences and Ethnic        

Differences 

 

Abstract 

The landscape of contemporary engineering education is ever changing, adapting and evolving.   
As an example, finite element theory and application has often been included in graduate-level 
courses in engineering programs; however, current industry needs bachelor’s-level engineering 
graduates with skills in applying this essential analysis and design technique. Engineering 
education is also changing to include more active learning. In response to the need to introduce 
undergrads to the finite element method as well as the need for engineering curricula to include 
more active learning, we have developed, implemented and assessed a suite of Active Learning 
Module (ALMs).The ALMs are designed to improve student learning of difficult engineering 
concepts while students gain essential knowledge of finite element analysis.  As such, the ALMs 
guide the students through a process using commercial finite element software to solve a 
problem (or set of problems) in a particular area of engineering.  Some overview of finite 
element theory is included.  The active learning occurs when the students interact with the 
physics of the problem by developing and perturbing the model of the problem.  Additional 
active learning is sometimes included through collaborative exercises using the ALM.  We have 
used the Kolb Learning Cycle as a conceptual framework to guide our design of the ALMs. 

Originally developed using MSC Nastran, followed by development efforts in SolidWorks 
Simulation, ANSOFT, ANSYS, and other commercial FEA software packages, a team of 
researchers, with National Science Foundation support, have created over twenty-eight active 
learning modules. We will discuss the implementation of these learning modules which have 
been incorporated into undergraduate courses that cover topics such as machine design, 
mechanical vibrations, heat transfer, bioelectrical engineering, electromagnetic field analysis, 
structural fatigue analysis, computational fluid dynamics, rocket design, chip formation during 
manufacturing, and large scale deformation in machining. 

This update on research findings includes statistical results for each module which compare 
performance on pre- and post-learning module quizzes to gauge change in student knowledge 
related to the difficult engineering concepts that each module addresses. Statistically significant 
student performance gains provide evidence of module effectiveness. In addition, we present 
statistical comparisons between different personality types (based on Myers-Briggs Type 
Indicator, MBTI, subgroups), different learning styles (based on Felder-Solomon ILS 
subgroups), and gender and ethnicity in regards to the average gains each group of students have 
made on quiz performance. Although exploratory, and generally based on small sample sizes at 
this point in our multi-year effort, the modules for which subgroup differences are found are 
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being carefully reviewed in an attempt to determine whether modifications should be made to 
better ensure equitable impact of the modules across students from specific personality and/or 
learning styles subgroups (e.g., MBTI Intuitive versus Sensing; ILS Sequential versus Global). 

 

 

Introduction 

As educators  advance engineering education, active learning tools are becoming  preferred 
choices for addressing how  students struggles with complex topics in engineering, especially as 
a function of their backgrounds, demographics, and personality type. In order to move beyond 
the typical road bumps encountered when teaching difficult concepts, contemporary methods are 
being developed that seek to engage students actively, both inside and outside the classroom, as 
well as kinesthetically through the various human senses. Such approaches have the potential to 
improve student comprehension and knowledge retention, and most importantly, to increase 
students' interest in the material1. 

Assisting students in the learning of imperative analysis tools is especially important with current 
advanced techniques used in industry.  One such technique is finite element analysis. The finite 
element (FE) method is widely used to analyze engineering problems in many commercial 
engineering firms. It is an essential and powerful analytical tool used to design products with 
ever shorter development cycles2-4. Today this tool is primarily taught at the graduate 
engineering level due to the fact that FE  theory is very mathematics-intensive which in the past 
has made it more suitable for graduate engineering students who have  a more rigorous 
mathematical education.  This has changed most recently with the advent of high speed 
inexpensive computers and workstations and fast algorithms which simplify the FE software. 
Introducing new material into the already packed 4 year engineering programs poses challenges 
to most instructors.  The need for integrating FE theory and application across the engineering 
curriculum has been established and methods have been suggested by other engineering  
authors4-6. This paper discusses the technique of designing finite element active learning modules 
(ALM) across many areas of engineering and the success of these modules in improving the 
student's understanding of the engineering concepts and of the finite element analysis technique. 
Previous authors over the past six years have reported their success in using their finite element 
learning modules7-15. 

The primary focus of this paper is to report the incremental student improvement in engineering 
learning from using many of the twenty-eight FE learning modules in nine specific areas of 
engineering at nine engineering colleges and universities over the past six years. This paper is an 
update of the research reported in an earlier paper.  This paper also reports the initial findings on 
the effects of student personality types on improvement in specific engineering areas of these 
ALMs. 
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An important goal for this work is to educate a diverse undergraduate group of engineering 
students with the basic knowledge of FE theory, along with practical experience in applying 
commercial FE software to engineering problems. The lack of experience in using numerical 
computational methods in designing solutions to structural, vibrational, electromagnetic, 
biomedical electromagnetics, computational fluid dynamics, and heat transfer is a noted problem 
for some engineering graduates16-17. The Accreditation Board for Engineering and Technology, 
Inc. (ABET, Inc.) expects engineering graduates to have “an ability to use the techniques, skills, 
and modern engineering tools necessary for engineering practice” such as FE analysis18. Hence, 
engineering schools have, or are planning to add FE analysis to their curricula, but these plans 
are not occurring fast enough to meet the demand of firms competing in the global economy19-25.  

All learning modules developed in these six years of work are available free to all USA 
engineering educational institutions on http://sites.google.com/site/finiteelementlearning/home. 

Initially, we developed FE learning modules in six engineering areas: (1) structural analysis, (2) 
mechanical vibrations, (3) computational fluid dynamics, (4) heat transfer, (5) electromagnetics, 
and (6) biometrics. To evaluate these "Proof of Concept" modules, they were integrated into 
existing courses in the corresponding subject areas.  Faculty and students initially assessed their 
effectiveness at three higher educational institutions. We included student demographic  data, 
learning style preference data and MBTI data in the surveys' conducted on these initial twelve 
learning modules, but found that the sample size was in most instances too small to develop any 
statistically meaningful analysis. 

In the second Phase 2 work we expanded our FE learning modules to an additional three 
engineering areas: (7) fatigue analysis, (8) manufacturing process analysis and (9) manufacturing 
forming analysis. We continued to integrate these learning modules into existing courses in the 
corresponding areas. Faculty and students were asked to evaluate the effectiveness of these 
additional sixteen new learning modules with web-based personality learning assessment surveys 
in addition to the demographic, and student profile surveys.   Small sample sizes are still a 
concern in the learning personality style analysis, but we are working toward combining all data 
for a specific learning module (e.g. “Curved Beam Learning Module” administered with minor 
changes over four years to obtain larger sample sizes to analyze. We are hopeful that as larger 
more diverse engineering colleges and universities join us in this work; their larger student 
populations will support statistically significant analysis of diverse student learning styles and 
MBTI personality analysis for these twenty eight ALMs.  

Methodology 
 
The following methodology was used in analyzing the data: 
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1. Dependent samples t-tests were conducted in order to analyze whether or not exposure to 
the module significantly improved student performance on the pre-post measure, given 
before and after module implementation. 

2. Independent samples t-tests were conducted to compare improvement on the pre-post 
measure for each personality type, learning style, ethnicity, and gender subgroup. The 
purpose was to examine whether or not any subgroup might have benefitted more (i.e., 
improved more from pre-test to post-test) from exposure to a module than another. 

3. Beginning in the third year of implementation, Mann-Whitney analyses were conducted 
in addition to the independent samples t-tests. These analyses are generally more 
stringent than t-tests and do not assume that the scores in the population are normally 
distributed. The assumption of normal distribution is generally made when samples sizes 
are larger (i.e., justified by the Central Limit Theorem). The Mann-Whitney analyses 
were appropriate to utilize for the current study because the sample sizes being analyzed 
tended to be small.   
 

Note that there are some assumptions inherent in this assessment strategy.  First is that the 
quizzes which are given before (pre-quiz) and again after (post-quiz) the students’ use of the 
ALM are effective measures of the students’ understanding of the technical content.  We 
have worked with assessment experts to try to ensure the quality of these quizzes.  Second, 
we are not directly comparing the use of the ALMs to a different learning experience.  We 
believe that the enhancement that commonly accompanies the infusion of active learning into 
the classroom and the inherent benefit of exposure to the finite element method allows us to 
make the assumption that if the students’ quiz scores increase (pre to post) then the ALMs 
are effective.  Finally, we are assuming that if one demographic group (MBTI, Learning 
Style, Ethnicity or Gender) benefits more than another group, that this represents an 
opportunity to improve the learning experience by altering either the ALM itself, or the 
manner in which it is implemented, in order to improve the effectiveness for the group with 
lower benefit.  Note that here our goal is not to “even out” the benefit; meaning that we alter 
the ALMs so that the group that showed increased benefit has their benefit lowered while the 
group with less benefit has theirs raised.  Instead, our goal is to alter the ALM so that the 
benefit for the lower group is increase while the benefit for the higher group remains the 
same )or also raises).   
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Student Improvement and Learning Styles (Phase II Year 2) 

We administered twelve of the Phase 2 FE ALMs during the second year of this research and 
focused on measuring both student learning content using the pre and post learning module 
quizzes and student learning bias toward a specific Myers Brigg Type Indicator (MBTI) or Index 
of Learning Style (ILS) as measured with the on-line MBTI survey and the on-line Felder-
Solomon survey. Six of the learning modules suggested no bias toward a specific MBTI or Index 
of Learning Style and six of the learning modules suggested a bias toward a specific MBTI or 
Index of Learning Style. 

The twelve FE Learning Modules analyzed during the Second Year of this research were 

 Structural Analysis of  Large Deformation of a Cantilever Beam 

 Sheet Metal Forming using FE Analysis: Shallow Drawing of a Circular Sheet 

 Vibration of Critical Speeds of Rotating Shafts 

 Computational Fluid Drag of a Bobsled Model 

 Power Transmission Shaft Stress Analysis 

 Machining Analysis during Chip Formation 

 Thermal Finite Element Analysis: Semi-Infinite Medium 

 Thermal Finite Element Analysis: Steady Heat Conduction 

 Axisymmetric Rocket Nozzle 

 Small Engine Cooling Fin 

 Defibrillation Electrode Modeling 

 Bioelectric Field Modeling 
 

Table 1 is a Summary of Year 2 Student Improvement and Personality/Learning Style Results for 
Twelve (12) Phase 2 Learning Modules (2011-2012) during the second year of this National 
Science Foundation Grant. 
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Table 1.  Summary of Year 2 Student Improvement and Personality Learning Style Results 
for Phase 2 Learning Modules (2011-2012) 

 

FE Learning Module Semester Institution 
Students 

(n) 

Pre-Quiz 
Avg (%) 

Post-Quiz 
Avg (%) 

% Student 
Improvement1 

Subgroup differences 
MBTI or ILS2

 

Structural Analysis of 
Large Deformation of a 
Cantilever Beam 

Fall 
2011 

Tuskegee 
 

16 33.0 35.2 
6.90 

(p = 0.523) 
Introvert (N=7) > Extrovert (N=9)** 

(MBTI; p = 0.034) 

Axisymmetric Rocket 
Nozzle 

Fall 
2011 

USAFA 
 

11 42.0 54.5 
29.73* 

(p = 0.093 ) 
Extrovert (N=5) > Introvert (N=5)** 

(MBTI; p = 0.014) 

Small Engine Cooling 
Fin 

Fall 
2011 

USAFA 
 

11 63.6 59.1 
-7.14 

(p = 0.397) 
No 

Vibration of Critical 
Speeds in Rotating 
Shafts 

Fall 
2011 

CSU 
Pomona  

9 62.2 72.2 
16.07* 

(p = 0.067) 
Introvert (N=6) > Extrovert (N=3)** 

(MBTI; p = 0.033) 

Computational Fluid 
Drag of Bobsled Model 

Fall 
2011 

UoP  17 50.0 65.3 
30.60** 

(p < 0.001) 
No 

Vibration of Critical 
Speeds in Rotating 
Shafts 

Fall 
2011 

UoP 25 47.2 59.2 
25.42** 

(p = 0.003) 
Intuitive (N=12) > Sensing (N=13)** 

(MBTI; p = 0.018) 

Machining Analysis 
During Chip Formation 

Spring 
2012 

UoP 12 50.8 83.3 
64.18** 

(p < 0.001) 

Perception (N=2) > Judgment 
(N=10)** 

(MBTI; p = 0.046) 

Thermal FEA: Semi 
Infinite Medium and 
Steady-State Heat 
Conduction 

Spring 
2012 

UoP 26 62.5 74.7 
19.52** 

(p = 0.002) 
No 

Power Transmission 
Shaft Stress Analysis 

Spring 
2012 

UoP 17 59.3 81.4 
37.19** 

(p < 0.001) 
N/A 

Defibrillation Electrode 
Modeling 

Spring 
2012 

Washington 

 
18 27.1 57.6 

112.82** 
(p < 0.001) 

No 

Bioelectric Field 
Modeling 

Spring 
2012 

Washington 

 
19 45.9 63.9 

39.34** 
(p < 0.001) 

Sequential (N=12) > Global (N=7)** 
(ILS; p = 0.041) 

Sheet metal forming 
using FE Analysis: 
Shallow Drawing of a 
Circular Sheet 

Spring 
2012 

Tuskegee 
 

18 50.0 56.7 
13.33* 

(p = 0.083 ) 
No 

Overall Student Improvement Average 32.33%  
1 Percent (%) Improvement = [(post-quiz score - pre-quiz score)/pre-quiz score] * 100 
2 Felder-Soloman Index of Learning Styles (ILS); Myers Brigg Type Indicator (MBTI) 
** Sufficient evidence of statistically significant improvement or subgroup differences (p < 0.05) 
* Moderate evidence of statistically significant improvement or subgroup differences (0.05 ≤  p < 0.10) 
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The average improvement for the twelve learning modules administered was 32.33% where the 
number of students tested is shown as n and the quiz scores (both pre and post) are out of 100%. 
For reference, a sample twelve question pre/post quiz for the Thermal FEA Learning module is 
included in Appendix A; the same quiz is given both pre-and post-learning module activity.  
Three of the twelve FE learning modules showed moderate evidence of improved student 
performance (.05 ≤ p < .10) as noted in Table 1 by *. Seven of the twelve FE learning modules 
showed sufficient evidence of improved student performance (p<0.05). Two of the twelve FE 
ALMs showed insufficient evidence of improved student performance (i.e. p = 0.523 and p = 
0.397). The authors of these two FE learning modules will be working to improve their FE 
learning modules, assessment quizzes and other instruments to improve their students’ 
performance. 

As shown in Table 1, five of the FE learning modules showed no evidence of subgroup 
difference upon analysis of the MBTI and ILS surveys taken by the students, therefore these 
modules were considered ideal in their handling of the student subgroups taking the quizzes.  Six 
of the remaining FE learning modules show statistically significant subgroup differences (p 
<0.05) for the MBTI and ILS student survey data. 

Regarding the subgroups mentioned in the last column of Table 1, extroverts tend to take 
initiative and gain energy from interactions, whereas introverts prefer more of a relatively 
passive role and gain energy internally from cognition; sensors tend to process information with 
their focus on their five senses and the environment, whereas intuitors tend to focus on the 
possibilities of the information and see the big picture; perceivers prefer to be sure all data are 
thoroughly considered, whereas judgers summarize the situation as it presently stands and make 
decisions more quickly; and a sequential learner tends to gain understanding in linear steps, 
whereas a global learner tends to learn in large jumps, suddenly “getting it”.  

Student Improvement and Learning Styles (Phase II Year 3) 

Table 2 presents similar results for the Phase 2, Year 3 Learning Modules (2012-2013).  It can be 
seen that ten of the eleven learning modules showed sufficient evidence of improved student 
performance (p<0.05) as indicated by the ** in Table 2.  The average improvement for the 
eleven learning modules administered was 27.71%. 
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Table 2. Summary of Year 3 Student Improvement and Personality/Learning Style Results 
for Phase II Learning Modules (2012-2013) 

 
 

 

FE Learning Module Semester Institution 
Students 

(n) 

Pre-Quiz 
Avg (%) 

Post-Quiz 
Avg (%) 

% Student 
Improvement1 

Subgroup differences 
MBTI or ILS2

 

Curved Beam Stress 
Fall 
2012 

UoP 36 72.2 89.4 
23.72** 

(p < 0.001) 
No 

Computational Fluid 
Drag of Bobsled Model 

Fall 
2012 

UoP 8 48.8 72.5 
48.72** 

(p = 0.001) 
No 

Rocket Nozzle 
Fall 
2012 

USAFA 16 42.2 67.2 
59.26** 

(p < 0.001) 
No 

Cooling Fin 
Fall 
2012 

USAFA 16 39.1 59.4 
44.74** 

(p < 0.001) 
No 

Critical Speed of 
Rotating Shaft 

Fall 
2012 

CSU 
Pomona 

13 69.2 78.5 
13.33** 

(p = .040) 
No 

Machining Analysis 
during Chip Formation 

Spring 
2013 

UoP 20 65.9 87.3 
32.41** 

(p < 0.001) 

Feeling (N=4) > Thinking (N=14)** 
(MBTI; p = 0.114, MWp = .046) 

 
Extrovert (N=10) > Introvert (N=8)* 

(MBTI; p = 0.034, MWp = .055) 
 

Active (N=14) > Reflective (N=4)* 
(ILS; p = 0.024, MWp = .061) 

Power Analysis of 
Rotating Transmission 
(Shaft Stress) 

Spring 
2013 

UoP 31 62.1 77.7 
25.11** 

(p < 0.001) 
No 

Thermal FEA: Semi-
Infinite Medium & 
Steady State Heat 
Conduction 

Spring 
2013 

UoP 29 42.0 54.0 
28.77** 

(p = 0.001) 
Extrovert (N=12) > Introvert (N=14)** 

(MBTI; p = 0.026, MWp = .041) 

Fatigue Analysis of 
Rotating Shaft 

Spring 
2013 

UoP 31 68.1 75.8 
11.37** 

(p < 0.001) 

Judgment (N=24) > Perception (N=7)* 
(MBTI; p = 0.045, MWp = .054) 

 
Reflective (N=9) > Active (N=22)* 

(ILS; p = 0.035, MWp = .064) 

Dynamics 2D Frame 
Spring 
2013 

New 
Haven 

15 43.6 49.7 
13.89** 

(p = 0.007) 
No 

Shallow Drawing 
Spring 
2013 

Tuskegee 15 58.5 60.6 
3.51 

(p = 0.308) 
No 

Overall Student Improvement Average 27.71%  

P= t-test results; MWp=Mann-Whitney results 
1 Percent (%) Improvement = [(post-quiz score - pre-quiz score)/pre-quiz score] * 100 
2 Felder-Soloman Index of Learning Styles (ILS); Myers Brigg Type Indicator (MBTI) 
** Sufficient evidence of statistically significant improvement or subgroup differences  (p < 0.05) 
* Moderate evidence of statistically significant improvement or subgroup differences  (0.05 ≤  p < 0.10) 
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Gender and Ethnicity Differences (Phase II Year 2) 

Due to small sample sizes, it was not possible to compare gender and ethnicity differences in 
delta (i.e., change from pre-test to post-test scores) within every module implemented. During 
Phase II Year 2 of this project, ethnicity differences were not analyzed due to low representation 
by various ethnic groups. In addition, the students introduced to these modules were 
predominantly male and therefore only one module from Phase II Year 2 was analyzed for 
gender differences (Table 3).  

 
Table 3. Gender Differences in Delta for Phase II Year 3 Learning Modules (2012-2013) 

Module Semester Institution Gender Students (n) Mean Delta Significant 
Difference 

Sheet metal 
forming using FE 
Analysis: 
Shallow Drawing 
of a Circular 
Sheet 

Spring 
2012 

Tuskegee 

Male 7 2.9 

No 
(p=.218) Female 7 12.9 

Delta = post-quiz score minus pre-quiz score 
** Sufficient evidence of statistically significant subgroup differences (p < 0.05) 
* Moderate evidence of statistically significant subgroup differences (0.05 ≤  p < 0.10)   

 
There was insufficient evidence (p>.05) to support differences in change from pre- to post-test 
scores (i.e., delta) by gender in the module analyzed. Specifically, the change in score from pre-
test to post-test was not significantly different for male and female students. An important 
limitation to note in the above analysis is the small sample sizes. With only 7 male and 7 female 
students represented, the statistical power to detect subgroup differences was too low to 
confidently rule out subgroup differences; however these preliminary results suggest that this 
module did not appear to favor students of one gender over the other. 

Gender and Ethnicity Differences (Phase II Year 3) 

Again, due to small sample sizes, it was not possible to compare gender and ethnicity differences 
in delta (i.e., change from pre-test to post-test scores) within every module implemented. During 
Phase II Year 3 of this project, gender differences were not analyzed due to low representation 
by female students.  

Due to low representation of various ethnic groups, the six modules listed in Table 4 were the 
only modules analyzed from Phase II Year 3 looking at ethnicity. In addition, only the 
Asian/Pacific Islander and White/Caucasian students were compared due to their similar sample 
sizes.  
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Table 4. Ethnicity Differences in Delta for Phase II Year 3 Learning Modules (2012-2013) 
Module Semester Institution Ethnicity Students (n) Mean Delta Significant 

Difference 
Computational 
Fluid Drag of 
Bobsled Model 

Fall 
2012 

UoP Asian/Pacific Islander 4 27.5 No 
(p=.588) White/Caucasian 2 20.0 

Machining 
Analysis during 
Chip Formation 

Spring 
2013 

UoP Asian/Pacific Islander 7 16.9 No 
(p=1.000) White/Caucasian 7 16.9 

Curved Beam 
Stress 

Fall 
2012 

UoP Asian/Pacific Islander 12 16.7 No 
(p=.397) White/Caucasian 16 19.8 

Critical Speed of 
Rotating Shaft 

Fall 
2012 

UoP Asian/Pacific Islander 10 7.0 No 
(p=.924) White/Caucasian 15 6.7 

Thermal FEA: 
Semi-Infinite 
Medium & 
Steady State Heat 
Conduction 

Spring 
2013 

UoP Asian/Pacific Islander 10 3.3 No 
(p=.192) White/Caucasian 13 12.2 

Power Analysis 
of Rotating 
Transmission 
(Shaft Stress) 

Spring 
2013 

UoP Asian/Pacific Islander 10 2.4 No 
(p=.224) White/Caucasian 15 1.3 

Delta = post-quiz score minus pre-quiz score  
** Sufficient evidence of statistically significant subgroup differences (p < 0.05) 
* Moderate evidence of statistically significant subgroup differences (0.05 ≤  p < 0.10)   
  

There was insufficient evidence (p>.05) to support differences in change from pre- to post-test 
scores (i.e., delta) by ethnicity in the modules analyzed. Specifically, the change in score from 
pre-test to post-test was not significantly different for Asian/Pacific Islander and 
White/Caucasian students. Once again, it is important to highlight the small sample sizes in the 
above analyses. With these small sample sizes, the statistical power to detect subgroup 
differences was too low to confidently rule out subgroup differences; however, these preliminary 
results suggest that these modules did not appear to favor students of one ethnicity over the 
other. 

Conclusions and Future Efforts 

This paper summarizes the results from two years of a Phase 2 NSF grant (2011-12 and 2012-
13).  Of particular significance is the student improvement in the pre- versus post-quiz scores.  
Specifically, these improvements were 32.3% and 27.7% for each year averaged over the entire 
twelve (2011-12) and eleven (2012-13) learning modules that were implemented during these 
years.  Since these learning modules are designed to supplement traditional lecture material in 
order to reinforce concepts that are typically difficult for students to understand, the authors 
believe that these student improvement performances are significant.  While somewhat 
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challenged in finding meaningful results regarding the effects of the learning modules on 
different learning styles, genders, and ethnicities, primarily due to small sample sizes, the authors 
are continuing to gather data in order to increase these sample sizes.  The goal is to gather and 
analyze data from several institutions in order to assess the pre- and post-quiz scores to 
determine if any MBTI or ILS types, genders, or ethnicities perform significantly better than 
their counterparts. In cases where they do perform significantly better, we intend to offer the 
learning module author suggestions on how to refine the learning modules (either in content or 
implementation process) in order to attempt to minimize the differences in performance across 
these types, while maintaining a high level of increase in performance as indicated by improved 
quiz performance after completing the learning modules for a vast majority of students. 
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Appendix A (Pre- and Post-Learning Module Quiz) 

 

Pre/Post Quiz: 

 Thermal Analysis Finite Element Learning Module Activities 

Animal ID: ____________________ 

 

1. Which of the following is true for a semi-infinite medium: 
 

a) Heat conduction does not change with time 

b) Heat conduction is one-dimensional 

c) Heat conduction is multi-dimensional 

d) There will always be heat generation 

2. Which of the following is true for a semi-infinite medium: 
 

a) Heat conduction results from the thermal condition at one boundary 

b) Heat conduction results from the thermal conditions at two boundaries 

c) Heat conduction results from the thermal conditions at more than two 
boundaries 

d) Heat conduction does not occur 

3. A semi-infinite medium that is exposed to a moving fluid with a very large heat transfer 
coefficient has a boundary condition that can be treated as: 

 

a) A specified heat flux boundary condition 

b) A specified temperature boundary condition 

c) An insulated boundary condition 

d) A line of symmetry 
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4. A large plane wall that is initially at a temperature Ti is suddenly exposed to a hot moving 
fluid on one side.  When can this object be treated as a semi-infinite medium? 

 

a) Never 

b) Always 

c) For a finite period of time immediately after the object is subjected to the 
hot moving fluid 

d) For a finite period of time beginning some time after the object is 
subjected to the hot moving fluid 

 

5. A large plane wall that is initially at a temperature Ti is suddenly exposed to a hot moving fluid 
on one side and a cold moving fluid on the other side.  When can this object be treated as a semi-
infinite medium? 

 

a) Never 

b) Always 

c) For a finite period of time immediately after the object is subjected to the hot 
moving fluid 

d) For a finite period of time beginning some time after the object is subjected to the 
hot moving fluid 

 

6. A two dimensional steady-state heat conduction problem requires how many boundary conditions 
in order to determine the temperature distribution? 

 

a) 1 

b) 2 

c) 3 

d) 4 
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7. An initial condition is not required in order to solve for the temperature distribution for which 
type of heat transfer problem? 

 

a) A semi-infinite medium problem 

b) A transient, one-dimensional problem 

c) A multi-dimensional problem 

d) A steady-state problem 

 

8. The finite element method of modeling conduction heat transfer approximates a partial 
differential equation with: 

 

        a) an ordinary differential equation 

b) a finite number of algebraic equations 

c) a series of finite numbers 

d) a finite number of elements 

 

9. The finite element method of modeling conduction heat transfer results in an approximate 
solution for: (fill in the blank) 

 

          _______________________________________ 

 

10. Two different objects (A and B) are exposed to a hot fluid on their left side that results in one-
dimensional, steady-state heat conduction.  The thermal conductivity of object A is double the 
thermal conductivity of object B.  The temperature at the right side of object A will be: 

 

               a) higher than the temperature at the right side of object B      

b) lower than the temperature at the right side of object B    

c) the same as the temperature at the right side of object B    

d) unknown (it cannot be determined from the given information) 
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11. The temperature distribution throughout a solid body is shown below.  Which of the following 
statements is true? 

 

 

 

a) this is a one-dimensional heat transfer problem     

b) this is a two-dimensional heat transfer problem     

c) this is a three-dimensional heat transfer problem     

d) it cannot be determined whether this is a 1-D, 2-D or 3-D problem 
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12. A top view of the temperature distribution from the solid body shown in the previous problem 
(problem #11) is shown below.  Which type of boundary condition occurs at the bottom surface 
labeled below? 

 

 

 

a) a specified temperature boundary condition     

b) a heat generation boundary condition 

c) a convection boundary condition     

d) an insulated (zero heat flux) boundary condition 

Bottom surface 
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