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Abstract 
 
A course in rocketry is offered as a 1-hour elective. The objective is for students to design, analyze, 
construct and launch a rocket. The rockets must be designed to not exceed the maximum-allowable 
altitude for the launch site as specified by the FAA. Launches are done under the auspices of the National 
Association of Rocketry (NAR). For approximately the first 2/3 of the semester, physics of trajectory, 
stability analysis and construction methods are covered via lectures. In the second 1/3, shop time is 
scheduled for construction. Generally, launches are conducted the following semester when the field is 
available. 
 
Course Description 
 
The course meets once a week for 50 minutes. Students are required to have had the first series of physics 
and calculus, though not necessarily differential equations. Material covered includes trajectory analysis 
by solution of the differential equation of Newton’s Second Law of motion, accounting for change of 
mass and drag variation with velocity. The equation is solved both analytically by means of 
simplifications and by use of finite differencing where no approximations are required. The principle of 
stability based on center-of-mass and center-of-pressure is covered, as well as basic rocket design. 
 
Students are required to perform a trajectory and stability analysis, and produce a design, specified in an 
engineering drawing. Each student is allotted a budget of $125. The design is required to include an 
altimeter as payload and can include other instruments at the discretion of individuals. Rockets are 
designed so as not to exceed maximum allowable launch-site altitude, 5280 ft. for the site we use. Status 
presentations are made at mid-term and final designs are presented at end-of-term along with a final 
written report. A parts list must be included in the report for purchase by the instructor. The course is 
graded on a satisfactory/unsatisfactory basis. Actual rocket construction, though begun during the 
semester after completion of the lecture-part of the course, is typically completed in the following 
semester on students’ own time. University shop equipment is used under supervision. 
 
Summary 
 
This course has been offered over a period of several years. Students are typically junior and senior 
physics and engineering majors with the necessary mathematics and physics requisites. Some sophomores 
also take the course. One interesting aspect of the course is the evolution of designs over the years, when 
first offered, rocket designs typically employed a 3” diameter body tube and have gradually increased to 
4” and even 5.5” diameters. Also more multi-thruster designs are done as opposed to a single thruster. 
Generally, two-stage designs are not attempted though are certainly permitted. 
 
Generally speaking, the course has been favorably received by students. Their overall assessment is that it 
provides a “real world” experience, an actual engineering application of physics and analysis.  
 
This paper is organized such that anyone interested in pursuing the technical area as a course offering has 
the analysis and references available. Any use of the material herein does not require the author’s 
permission. 
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Trajectory Analysis 
 

Analysis of the rocket trajectory, in particular, the altitude it attains is of primary importance, namely to 
insure it does not exceed the allowable altitude for the launch field. The trajectory analysis makes use of 
Newton’s Second Law, 

   dF MV
dt

  

or  cos dT D Mg MV
dt

    (1) 

Here, T = thrust, D = drag, M = mass, V = velocity,  = flight angle, g  acceleration of gravity and 
t = time. 
 
The preceding equation can be solved analytically by first applying the simplifying assumption, 

 dV dMM V
dt dt

  

 
Furthermore, if drag and trajectory angle θ are ignored, the classic rocket equation can be obtained by 
integration, 
 lnB eff BV u MR gt    (2) 
 
where  VB = velocity at motor burnout,  
 ueff = effective velocity = motor total impulse/propellant mass, 
 MR = propellant mass/initial rocket mass, 
 tB = motor burn time. 
 
A more complicated version of this equation is obtained when drag is considered (consult author for 
details). 
 
Newton’s Second Law can be solved without simplifying assumptions by employing finite-difference 
time-stepping where M, V, D, and T all vary in time. Time variation of thrust is obtained from motor test 
data provided by the manufacturers (AeroTech for example). 

 
Basic time-stepping is employed to solve the differential equation (1) by first writing it in finite-
difference form, 

     1

1

cosi i
i i i i

i i

MV MV
T D M g

t t





  


 

where, 0,1,2, ,i n   
with the initial conditions, 0 00,  0t V   
 0  initial launch angle, 
 0 IM M   initial rocket mass, 
 0T   initial motor thrust. 
  
Solving for  MV at the new time step, i+1, 

       1
cos i

i i i ii i
i

t
MV MV T D M g

M





     

and the velocity, 
      1 1cosi i i i i i ii

V MV T D M g t M       (3) 
where 1i i it t t    time increment, 
   1i i p iM M m t    , 
  p P Bm M t  assumed constant (usually not sufficient info to do otherwise). 
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Thrust, ,iT is obtained from a thrust vs. time curve per the example given in Appendix A or an average 
thrust is used calculated from total impulse and motor burn time. 
 
Drag force is given by, 
  21

2i D iD C AV   (4) 
 
where   air density (assumed about constant over the trajectory), 
   DC  drag coefficient, assumed constant, 
   A  frontal area. 
 
Drag coefficient as a function of angle-of-attack, , and velocity is given in Appendix B. 
 
The altitude gained in each time increment it is, 
   1

1 12i i i ih V V t      (5) 
where the average velocity is used over the time increment. 
 
For the glide portion, i.e. unpowered portion, of the flight, eq. (2) reduces to, 

    1 cos i
i i i i i

i

tV V D M g
M




    (6)  

 

The total altitude gain is, 
1

n

i
i

H h


    (7) 

 
An example of results from a student team on their trajectory analysis is given in the following table, 
where HB = altitude at end of motor burn, HA = altitude gained during free-flight and HTOT = final 
altitude. In the analysis, a constant coefficient-of-drag of 0.5 was assumed. A single AeroTech G-80T 
motor is used with an average thrust = 80.35 N. 

 
Table 1. Trajectory Analysis 

 

Mass of Rocket 0.354 kg ρ(air density) 1.2 kg/m3 Coefficient of Drag CD 0.5  

Mass of Propellant  0.0625 kg dm/dt 0.03676 kg/s Trust T (constant) 80.35 N 

Agravity 9.8 m/s2 t(burn) 1.7 s Mass ratio 0.85  

θ 0  Frontal area A 0.0034211 m2 Total Impulse 136.6 N-s 
         

       
Time step analysis         

Vi+1= Vi+[Ti-Di-Migcosθi](Δt/Mi)   HB HA Htot  

 Di=1/2*CDρAVi^2   230.71 483.50 714.21 m 

 Mi+1= Mi-dm/dt*Δti       

  dm/dt=MP/tB   Vburn 231.4032 m/s  
 
A drawing of the rocket for this case is given in Appendix C. 
 
A stability analysis of the rocket design is also required to insure appropriate location of center-of-
pressure, cp, with respect to center-of-mass, cm, to insure stable flight. Development of the analysis for 
proper location of cp with respect to cm is given in Appendix D. Determination of center-of pressure 
employs the Barrowman equations, Ref. 4, that are programmed in a spreadsheet. Use of the 
spreadsheet requires input of rocket body, nosecone and fin geometry. 
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Conclusion 
 

The course is offered each semester to accommodate as many students and their schedules as possible. 
It also includes some enrollees who are not physics or engineering majors, indicating that it does have 
some universal appeal. One outgrowth of the course is the intent to encourage participation in rocket 
competitions through the Engineering Club, a request made by current students. Overall, the course has 
been well received over the years, has been successful and will continue to be offered. 
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Fig. 1. Vector diagram for stability analysis.
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 Fig. 2. The three conditions of stability.   From Handbook of Model Rocketry 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Definition of dimensions for stability analysis. 
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Appendix A 
 

AeroTech I65 Thrust Curve 

 
  Thrust Data  
 Time Thrust 

0.086 55.739 
0.099 90.267 
0.148 113.911 
0.296 113.911 
0.542 121.767 
0.579 123.588 
0.825 128.953 
0.973 132.593 
1.022 138.725 
1.071 132.593 
1.330 138.629 
1.502 139.875 
1.724 150.070 
2.019 141.886 
2.733 131.923 
3.140 119.181 
3.213 122.151 
3.275 114.295 
3.570 103.948 
3.977 88.791 
4.051 93.036 
4.100 84.547 
4.432 74.229 
4.912 58.440 
5.725 34.758 
6.119 24.430 
6.611 13.489 
7.166 6.787 
7.596 3.729 
7.978 1.886 
8.114 0.665 
8.260 0.000  
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Appendix B 
 
Lift & Drag Coefficients 
 
■ Following are lift and drag coefficients for the V-2 rocket as a function of Mach Number*, ,M  and 

angle-of-attack, ,   

  
 From Rocket Propulsion Elements, Sutton & Biblarz, 8th Edition, 2010. 
 
  * Note:   M V S  
   V  vehicle velocity, m/s 
   S RT  speed of sound, m/s 
   1.4,   ratio of specific heats, dimensionless 
   R  8310 J/kgmol-K 
   T   temperature, K  
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Appendix C 
 

 Rocket Dimensions 

 
 
 

 
Appendix D 
 
Stability Analysis 
 

Induced lift and drag on the rocket body, where lift is normal to the direction of motion (velocity vector, 
V


) and drag is coincident with the direction of motion, are illustrated in Fig. 1. Lift, ,L  and drag, ,D are 
related to the velocity, ,V by, 
  21

2 DD C AV  
  21

2 LL C AV  
where  DC  = the drag coefficient as before, 
   LC  = the lift coefficient. 
      = air density. 
The resultant lift force, ,RNL


from the lift that occurs when the rocket axis is at an angle-of-attack, , acts 

through the center-of-pressure, ,cpx and normal to the rocket axis, where, 
  RN PN FNL L L 

  
  

Here  PNL


 = lift from pressure distribution over rocket body normal to rocket axis, 
   FNL


 = lift from fins normal to rocket axis, 

  RNL


  = resultant lift acting through the center-of-pressure, ,cpx normal to rocket axis. 
 

 The location of cpx is such that RNL


produces the same moment about the center-of-mass, ,cmx as the 
forces PNL


and ,FNL


 i.e., 
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  RN R PN P FN FL l L l L l    
    

 (vector cross product) (8) 
 

where  Pl


 = displacement from the body-lift vector to cm 
  Fl


 = displacement from the fin-lift vector to cm 

  Rl


  = displacement from the resultant lift vector to cm. 
 
With respect to the center-of-mass, ,cmx the resultant force acting through the center-of-pressure, ,cpx will 
give a moment, 
  RN RM L l 

 
  

where  R cp cml x x   (scalar magnitude)  
 
If cpx and cmx are not coincident, a pitching moment acts on the vehicle and the main stabilizing force 
is ,FNL


the force of fin lift. For stability, the relation between the lift from pressure distribution on the 
body of the rocket, ,PNL


and lift from the fins, ,FNL


 i.e. where the fin-lift moment counteracts the body-

lift moment is, 
  FN F PN PL l L l  

  
 (9) 

 
 Dropping vector notation and using magnitudes of force and distance, and the right-hand-rule for 

moment sign, i.e. scalar notation, 
   RN cp cm PN P FN FL x x L l L l     

or   PN P FN F FN F PN P
cp cm

RN RN

L l L l L l L l
x x

L L
 

     

But from (8),   0cp cmx x   

therefore,  cp cmx x  (10) 
 

 This states that the location of center-of-pressure, ,cpx should be aft (behind) or below, the center-of-
mass, ,cmx or (ideally) coincident with the center-of-mass for stable flight (see Fig. 2). In this case, the 
lift produced by the fins will always overcome the moment from body lift. 

 
 The Barrowman equations (Ref. 4) are employed to determine center-of-pressure, .cpx  Center-of-mass 

can be determined by a simple balance test or by, 

  
1 1

n n

cm cmn n nx x m m   (11) 

 where cmnx =  center-of-mass for component ;n  
  nm = mass of component n. 
 
 


