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Abstract

Mechanics of Materials texts traditionally introduce composite-material members as
examples to illustrate solution techniques for statically indeterminate problems. Examples of
composite-material members appear in chapters that individually introduce axial loading,
torsional loading, and bending. In the experience of these authors’, solutions to axial loading and
torsional loading problems are presented by explicitly demonstrating application of general
structural principles. That is, the principles of static equilibrium, geometric compatibility,
constitutive relations, and superposition are applied in a systematic manner. Alternatively, and
almost without exception, a technique commonly referred to as the transformed-section method
is presented as a way to solve problems involving bending. By imposing a strain compatibility
condition, materials making up the cross section are transformed into a fictitious homogeneous
material. Thisis accomplished by adjusting the geometry of each material by aratio of its elastic
modulus to that of the base material modulus, creating a fictionalized shape of homogeneous
material. The resulting single material cross section may then be analyzed in the traditional
manner.

In this paper the authors demonstrate that the transfor med-section method can be
adapted to solving composite member problems involving axial loading and torsional loading.
By imposing strain compatibility conditions analogous to the bending condition a set of
relationships for creating transformed sections and solving for deformation and stresses in both
axial and torsion problems is developed. Further, a demonstration problem for each of these
types of loading is solved by the methods developed herein. A discussion ensues as to the merits
of this approach, particularly with implications that relate to student comprehension. The merit
of the transformed-section method in presenting a graphical image of the relative resistance to
the applied loading due to material properties is emphasized. The paper closes with a series of
conclusions and recommendations for the incorporation and implementation of this alternative
approach into traditional Mechanics of Materials pedagogy.
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Introduction

The theory used in Mechanics of Materials texts for the analysis of solid beams loaded in
bending is based upon the idea that elongation and contraction of longitudinal fibersis
proportional to their distance from the neutral axis'. When a member is composed of two or
more materials the problem becomes statically indeterminate requiring the use of the principles
of static equilibrium, geometric compatibility, constitutive relations, and superposition applied
in a systematic manner. Further, the beam theory assumes that no slippage occurs between
materials, and that all of the materials remain elastic. Then the radius of curvature may be
employed to determine the strains in the various materials. The beam theory may be taken a step
further by imposing strain compatibility conditions and the conversion of one material into an
equivalent amount of another material, presumably one of the other materials in the member.
The member may now be analyzed as a homogeneous material with a different shape than the
original member. Thisisthe basisfor analysis of composite members loaded in bending by the
transform-section method. 2

When analyzing a member under axial load the general assumption is made, unless
defined otherwise, that the force is applied in a uniform manner across the member, and that the
member remainsin the elastic range. If the member consists of multiple materialsit is assumed
that all of the components of the member must deform both independently, based upon the
material properties of the component, and in a compatible manner, based upon the physical
relationship of the components. Traditional analysis would assume small and equal
deformations within the elastic stress range for all components. By enforcing these assumptions
aload distribution may be determined. This distribution will in turn lead to a determination of
stress and deformation.

When analyzing a circular member under an applied torgue the assumption is made that
the member remain eastic. If the member is of uniform cross section but consists of multiple
materials, one inside another, the additional assumption of no slippage between materialsis
made. If thereisno slippage then at any specific point along the member the angle of twist of
the member is the samefor all of the materialsinvolved. The angle of twist is proportional to
the applied torque, and the sum of the torques effecting each material must equal the total
applied torque.

The theory of the transfor med-section method is well known and generally accepted as a
method of analysis of members loaded in bending.® Transformed sections create a visual image
of acomposite member, distorted based upon the relative strength of the materials comprising
the member, which in turn is used for the analysis of that member. A material may be converted
or transformed into another material based upon theratio of Young's Moduli of the two
materials, n;. Then amodulus weighted centroid is determined using the deformed shape. In
bending, when using the relationship ¢ = My/l and Hooke' s Law the operation of transformation
seems a readily acceptable procedure. Aslong as the dimension of the material being
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transformed perpendicular to the axis of bending is not changed this concept is applicable and
yield good results compared to conventional methods. By using the same relationship between
the Young' s Moduli of the materials that is used for bending, or in the case of Torsional loading
the relationship between Shear Moduli, and other appropriate relationships depending upon type
of loading, the transformed-section method may be extended to members loaded with axial
loads or applied torque as well as bending loads as will be demonstrated.

Transformed-Section Method Applied to Axial Stress Conditions
For purposes of demonstration we will now look at an object made from three materials,
with material "1" denoted as the base material. From this a general solution for axially loaded

composite members will be formulated.

Determine: 61, 62, 63, O1, Oy, O3

Assumptions:
1. End PlateisRigid
2. Wadll isRigid
3. Thethree materials are bonded to both the plate and the wall, and no slip will occur.
4. All materials remain elastic. =)
Solution:
Static Equilibrium Criteria EEEE
SF=0 @ @ B85
P = Total Applied Force EEEE
P, = Portion of P applied to material 1 o

P, = Portion of Papplied to material 2
P; = Portion of P applied to material 3 Thus P=P;+P,+ P; P

Geometric Compatibility: Axial Deformations
(elongations) are identical

Py P, Ps
%=0220s20 y v ¥
Constituitive Relations: Materials obey Hooke's Law ¢ = Ee E
5 = RL 5. = PL, 5. = PLs ‘D] @ EeF
1= 27 37 A,
A.E:L AZEZ A3E3 LAY
PL _ PL  P,L o

- - Lt

AE, AE, AsE,
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i RAE PAE
in terms of Py P2=L and P, = 1A,
AE, AE,

AE  pAE o AE PRI E L E L E
P=p P TIA A SZEA
AR TTAE TTAE A“EfAzEfAsEl]

We will now introduce the coefficient "n", which is the ratio of the moduli of easticity of

the materials, in order transform all the materials at once into an equivalent amount of
the base material:

E E E
let , then —L=n; —2=n, —2=n,
1 1 El El
3 3 P
—12 P=0,> An, and o0,=—
A& ! ! z A nl|
1
P, PE, PE Pn
2~ EZ AlEl 3 2 = 3 = = O-lan
[zAnn]El S A
1 1
likewise 0, =0,N,

In the parlance of the transfor med-section method the term XA;ny; may be thought of as

the cross-sectional area of a fictitious homogeneous member composed of material 1, or
Ag.

k
AE=ZAn1i
1
From thisit is seen that the relationshipsin general terms would be:
P
Uj:Enl' ............................................................................................. Q)
PLn,.
PR e R (2a)
AE E, A "E AE
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The equivalent member, as defined by Ag, will have the same axial deformation
characteristics as the actual composite member. Stresses in each material portion of the
actual member are computed individually per equation (1), the expression for o;.

Example - Axial Stress

Tube:
dy=2.75"  Areanpe=4.7124in?
d = 1.25"
. . P = 50,000 Ibs.
Material: Aluminum S

En = 10x10° psi

Rod: |
d =1.25"  Aresge = 1.2272in? < L=20in %‘

Material: Steel
Eg = 30x10° psi

Determine: ., Op, O Tube

Solution: Rod
Using the general relationships, with stedl as the base material:

E E 6
n,=—%=10 n, =—A = 10)(106 —0.3333
Eq Eq 30x10

Kk
Ac, = Any = Agn,+A,n, =1.2272 (1) + 4.7124)(0.3333) = 2.7981in>
1

Thisisthe cross sectional area of a sted bar that would be required to replace the
composite cross section

The internal reaction through the member will be:

2R =0
Ry = P =50,000 Ibs Ry
e <+ X
P 50,000 : :
Oy =0,= A M = el (0.3333) = 5956.6 psi = 5.96ks
and
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P 50,000

Ogq =0, = n, =
o0 oA, Y 27981

(1.0)=17,869.9ps =17.87ksi

An alternate solution would be to use Aluminum as the base material:

k
A, = Any = Ayn,+Agn, = 47124(1) +1.2272(3.0) = 8.3940in’
1

Thisisthe cross sectional area of an aluminum bar that would be required to replace the
composite cross section

Again the internal reaction through the member will be 50,000 Ibs.

P 50,000 . .
Oy =0, = n, =— 1.0) =5956.6 psi = 5.96ksi
Al 1 AEN 11 83940( ) p
and
0g=0,= P, = 20000 (3.0)=17,869.9ps =17.87ks

A, 83940

Aluminum

To help visualize our equivalent cross sections:

Our original section looks like this:

actual composite

Cross section
ﬂd 2
— E _
When we used steel asour base  Ag_ = 1 2.7981
which makes d._ =1.8875in @ 1.8875"

T

equivalent cross
section in terms of stedl
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The axial deformation isthen:

s_PL__PL___ (50000)(20)
AE  A_E, (2.7981)(30x10°)

=0.0119"

g

When the base was Aluminum A = =8.3940 which makes d. , =3.2692in

T

720\
i
o
g

R
R
R
S
Sone
Ay
LRI

w

N

2]

©

N

The axial deformation is then: £
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<
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_PL__PL _ (50000)(20) _0i4g
~AE A E, (8:3940)(10x10°)
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equivalent cross
section in terms of

Transformed-Section Method Applied to Torsional Stress Conditions

As was done with axial loaded composite bars, bars subjected to torsion within the
elastic range may be analyzed in a manner similar to a bar of a homogeneous material when
subjected to torsion provided an equivalent polar moment of inertiais used.

Assumptions:
1. End PlateisRigid
2. WadlisRigid
3. Thethree materials are bonded to both the plate and the wall, and no slip will occur.
4. All materials remain elastic.

1 PP FFFFFFFFFFFFFFFFFFFF T
T
3@\ 2 AT AT ST ST ST SIS
N

«

Solution:

Static Equilibrium Criteria T/; ; ; / T
SM, =0 N A

T-Tl 'TZ-T3:O
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Geometric Compatibility: Torsional Deformations (twists) are identical
=0, =¢;=¢
Constituitive Relations: Materials obey Hooke's Law (T = Gy)

“=J,G %= J,G, %= J,G,4

TL_ TL TL
‘]lGl ‘]2G2 ‘J3GS

Interms of Ty: T2:LZGZ and T, =

JiG JiG

using n,; :% this makes: TZ:% and Tszm

1 1 ‘Jl

oringeneral T = —Tl“\]]i k!

1
Substituting these into the equilibrium criteria we have:

Tl‘]lnll + T1J2n12 + Tl‘]3n13 =T = Tl[Jlnll + ‘]2n12 + ‘]3n13]
Jl ‘]l ‘]l ‘]1

Where the term [J;ny; + by, + B3] IS the equivalent polar moment of inertia [Jg] of the
composite section in terms of the base material (material "1"), or:

Je= 2y

wherei takes on values from 1 to 3 in this example or whatever number of different
materials making up the composite section.

T J,n TJ.n T
Te=Ty and T,=—t T= T, =—JJ3”13
E E E
TJ.n,

ingeneral: T, =

E

Shearing stresses may be computed directly:
_Tnny 7, = Tr,n, £y = Tryng,
J E ‘]E J E
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Tiri Trinli
Ti =—=—0r
oo e

Theangle of twist is:

6= T,L _ TLn, TLn, TLNng,

T JG, 3G IG, JG,

From this the relationshipsin general terms would be:

D ©)
I JE
e i, (4a)
JeG,
Thiswill always reduceto: ¢ = L (4b)
‘]EGl

Again, analogous to the axial case, J: may be thought of as a geometric property of a
fictitious homogeneous member composed of material 1. The equivalent member, as

defined by Je, will have the same torsional deformation characteristics as the actual

composite member. Stresses in each material portion of the actual member are computed

individually per equation (3), the expression for ;.

Example - Torsional Stress

Solving the same example that was used for axial stress.

Tube = Aluminum Rod = Sted

Jrune = 5.3751in* Jrod = 0.2397 in*

Gy = 4x10° psi Gg = 11x10° psi
Solution:

Using the general relationships, with stedl as the base material:

Gg Gu
nu= Gg =10  np= Gg =0.3636

Je = 23iny;
‘]ES( = Jngll + JALn12 = (02397)(10) + (53751)(03636) =2.1943 in4
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b=t — (50,000(20)  =0,04143 radians = 2.374°
J:G, (2.1943111x106)

M aximum shear stress, which occurs at the outer radius of each member, would be:

T =1,= % = [(50,000)(1.25/2)(L.0)]/(2.1943) = 14.24 ksi

E

_ToMe _ 1(50,000)(2.75/2)(0.3636)]/(2.1943) = 11.39 ks

T =17
E

The alternative solution, using aluminum as the base material:

Sn Cs.
Ny = GAI =1.0 Ny = GAI =275

Je = 2diny
JEaj =Jyngg + Jgnlz = (53751)(10) + (02397)(275) =6.0343 in4

P (50,000)20) - 004143 radians = 2.374°

T J.G, (6.034314x106)

As was done with the axial stress problem, equivalent sections, made from asingle
material, may be drawn and used for calculation of the equivalent polar moment of

inertia. From there the calculation of the shear stress and rotation may be accomplished
as we have just demonstrated.

Conclusions and Recommendations;

This methodology was conceived with the analysis of composite concrete and steel
structuresin mind. Examples of such membersinclude steel beams with a composite concrete
dlab, steel columns encased in concrete or steel tubes filled with concrete. Additionally the
aircraft industry often uses sandwich type composites®, such as an aluminum skin, with amuch
less dense filler material, to significantly reduce the weight of a component. Similar technology

is being employed in the automotive industry in the fabrication of vehicle skins and
components.

This methodology is derived from basic principles and methods already employed in the
instruction of Mechanics of Materials. This method has the advantage of giving students a way
of visualizing the contributions of various components when discussing these specific types of
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indeterminate problems. This method, once derived, provides arapid method of calculation in a
manner that is consistent with the transformed-section method used in flexure.

This transformed-section methodology should, just like other methods, be derived in
class demonstrating it to be based upon sound principles. Once derived this new methodology
may be applied readily to both axial and torsional stress problems. When compared to
traditional methods of analysis the transformed-section method will give the students away of
solving statically indeterminate, composite member problems, of the sort illustrated here that
may be quicker, simpler and more visually oriented. In the future testing and sampling to verify
this hypothesis will be conducted. The future will also include the expansion of this theory to
combined stress consideration.
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