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Abstract 

 
Mechanics of Materials texts traditionally introduce composite-material members as 

examples to illustrate solution techniques for statically indeterminate problems. Examples of 
composite-material members appear in chapters that individually introduce axial loading, 
torsional loading, and bending. In the experience of these authors’, solutions to axial loading and 
torsional loading problems are presented by explicitly demonstrating application of general 
structural principles. That is, the principles of static equilibrium, geometric compatibility, 
constitutive relations, and superposition are applied in a systematic manner.  Alternatively, and 
almost without exception, a technique commonly referred to as the transformed-section method 
is presented as a way to solve problems involving bending. By imposing a strain compatibility 
condition, materials making up the cross section are transformed into a fictitious homogeneous 
material. This is accomplished by adjusting the geometry of each material by a ratio of its elastic 
modulus to that of the base material modulus, creating a fictionalized shape of homogeneous 
material. The resulting single material cross section may then be analyzed in the traditional 
manner.  
  

In this paper the authors demonstrate that the transformed-section method can be 
adapted to solving composite member problems involving axial loading and torsional loading. 
By imposing strain compatibility conditions analogous to the bending condition a set of 
relationships for creating transformed sections and solving for deformation and stresses in both 
axial and torsion problems is developed. Further, a demonstration problem for each of these 
types of loading is solved by the methods developed herein. A discussion ensues as to the merits 
of this approach, particularly with implications that relate to student comprehension. The merit 
of the transformed-section method in presenting a graphical image of the relative resistance to 
the applied loading due to material properties is emphasized. The paper closes with a series of 
conclusions and recommendations for the incorporation and implementation of this alternative 
approach into traditional Mechanics of Materials pedagogy. 
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Introduction 
 
 The theory used in Mechanics of Materials texts for the analysis of solid beams loaded in 
bending is based upon the idea that elongation and contraction of longitudinal fibers is 
proportional to their distance from the neutral axis1. When a member is composed of two or 
more materials the problem becomes statically indeterminate requiring the use of the principles 
of static equilibrium, geometric compatibility, constitutive relations, and superposition applied 
in a systematic manner.   Further, the beam theory assumes that no slippage occurs between 
materials, and that all of the materials remain elastic.  Then the radius of curvature may be 
employed to determine the strains in the various materials.  The beam theory may be taken a step 
further by imposing strain compatibility conditions and the conversion of one material into an 
equivalent amount of another material, presumably one of the other materials in the member.  
The member may now be analyzed as a homogeneous material with a different shape than the 
original member.  This is the basis for analysis of composite members loaded in bending by the 
transform-section method. 2 
 
 When analyzing a member under axial load the general assumption is made, unless 
defined otherwise, that the force is applied in a uniform manner across the member, and that the 
member remains in the elastic range.  If the member consists of multiple materials it is assumed 
that all of the components of the member must deform both independently, based upon the 
material properties of the component, and in a compatible manner, based upon the physical 
relationship of the components.  Traditional analysis would assume small and equal 
deformations within the elastic stress range for all components.  By enforcing these assumptions 
a load distribution may be determined.  This distribution will in turn lead to a determination of 
stress and deformation. 
 
 When analyzing a circular member under an applied torque the assumption is made that 
the member remain elastic.  If the member is of uniform cross section but consists of multiple 
materials, one inside another, the additional assumption of no slippage between materials is 
made.  If there is no slippage then at any specific point along the member the angle of twist of 
the member is the same for all of the materials involved.  The angle of twist is proportional to 
the applied torque, and the sum of the torques effecting each material must equal the total 
applied torque. 
 
 The theory of the transformed-section method is well known and generally accepted as a 
method of analysis of members loaded in bending.3  Transformed sections create a visual image 
of a composite member, distorted based upon the relative strength of the materials comprising 
the member, which in turn is used for the analysis of that member.  A material may be converted 
or transformed into another material based upon the ratio of Young’s Moduli of the two 
materials, nji.  Then a modulus weighted centroid is determined using the deformed shape.  In 
bending, when using the relationship σ = My/I and Hooke’s Law the operation of transformation 
seems a readily acceptable procedure.  As long as the dimension of the material being 
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transformed perpendicular to the axis of bending is not changed this concept is applicable and 
yield good results compared to conventional methods.  By using the same relationship between 
the Young’s Moduli of the materials that is used for bending, or in the case of Torsional loading 
the relationship between Shear Moduli, and other appropriate relationships depending upon type 
of loading, the transformed-section method may be extended to members loaded with axial 
loads or applied torque as well as bending loads as will be demonstrated.  
 
Transformed-Section Method Applied to Axial Stress Conditions  
 

For purposes of demonstration we will now look at an object made from three materials, 
with material "1" denoted as the base material.  From this a general solution for axially loaded 
composite members will be formulated. 
 
Determine:  δ1, δ2, δ3, σ1, σ2, σ3 
 
Assumptions: 

1. End Plate is Rigid 
2. Wall is Rigid 
3. The three materials are bonded to both the plate and the wall, and no slip will occur. 
4. All materials remain elastic. 

 
Solution: 
 
 Static Equilibrium Criteria 
 
  ΣF = 0  
 

P = Total Applied Force 
   P1 = Portion of P applied to material 1 
   P2 = Portion of P applied to material 2 
   P3 = Portion of P applied to material 3 Thus  P = P1 + P2 + P3   

 
Geometric Compatibility:  Axial Deformations 

(elongations) are identical 
 
  δ1 ≡ δ 2 ≡ δ 3 ≡ δ 
 
 Constituitive Relations:  Materials obey Hooke's Law σ = Eε 
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We will now introduce the coefficient "n", which is the ratio of the moduli of elasticity of 
the materials, in order transform all the materials at once into an equivalent amount of 
the base material: 
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In the parlance of the transformed-section method the term ΣAin1i may be thought of as 
the cross-sectional area of a fictitious homogeneous member composed of material 1, or 
AE. 
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The equivalent member, as defined by AE, will have the same axial deformation 
characteristics as the actual composite member.  Stresses in each material portion of the 
actual member are computed individually per equation (1), the expression for σj.   

 
 
Example - Axial Stress   
 
Tube: 
 do = 2.75" AreaTube = 4.7124 in2 
 di = 1.25" 
 Material: Aluminum 
   EAl = 10x106 psi 
Rod: 
 d  = 1.25" AreaRod = 1.2272 in2 
 Material: Steel 
   ESt = 30x106 psi 
 
Determine:  δL, σAl, σSt 
 
Solution: 
 Using the general relationships, with steel as the base material: 
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This is the cross sectional area of a steel bar that would be  required to replace the 
composite cross section 
 
The internal reaction through the member will be:  
 
ΣFx = 0  
 

 RN = P = 50,000 lbs 
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An alternate solution would be to use Aluminum as the base material: 
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This is the cross sectional area of an aluminum bar that would be required to replace the 
composite cross section 

 
Again the internal reaction through the member will be 50,000 lbs. 
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To help visualize our equivalent cross sections: 
 
 
 
Our original section looks like this: 
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The axial deformation is then: 
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The axial deformation is then: 
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Transformed-Section Method Applied to Torsional Stress Conditions  
 

As was done with axial loaded composite bars, bars subjected to torsion within the 
elastic range may be analyzed in a manner similar to a bar of a homogeneous material when 
subjected to torsion provided an equivalent polar moment of inertia is used. 
 
Assumptions: 

1. End Plate is Rigid 
2. Wall is Rigid 
3. The three materials are bonded to both the plate and the wall, and no slip will occur. 
4. All materials remain elastic. 

 
 

 

 

 
 
 
 
Solution: 
 
 Static Equilibrium Criteria 
 
  ΣΜx = 0    
 
  T - T1  - T2 - T3 = 0  

L 
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 Geometric Compatibility:  Torsional Deformations (twists) are identical 
 
  φφφφ ≡≡≡ 321    

 
 Constituitive Relations:  Materials obey Hooke’s Law (τ = Gγ) 
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Substituting these into the equilibrium criteria we have: 
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Where the term [J1n11 + J2n12 + J3n13] is the equivalent polar moment of inertia [JE]of the 
composite section in terms of the base material (material "1"), or: 

 
JE = Σ Ji n1i  

 
where i takes on values from 1 to 3 in this example or whatever number of different 
materials making up the composite section. 
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Shearing stresses may be computed directly: 
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The angle of twist is: 
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From this the relationships in general terms would be:  
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Again, analogous to the axial case, JE may be thought of as a geometric property of a 
fictitious homogeneous member composed of material 1.  The equivalent member, as 
defined by JE, will have the same torsional deformation characteristics as the actual 
composite member.  Stresses in each material portion of the actual member are computed 
individually per equation (3), the expression for τi.   

 
Example - Torsional Stress  
 
Solving the same example that was used for axial stress. 

Tube = Aluminum  Rod = Steel 
JTube = 5.3751 in4   JRod = 0.2397 in4 

GAl = 4x106 psi  GSt = 11x106 psi 
 

Solution: 
 Using the general relationships, with steel as the base material: 
 

n11 = St

St

G

G
 = 1.0 n12 = St

Al

G

G
 = 0.3636 

 
  JE = ΣJin1i 
 

 JEst = JSTn11 + JALn12 = (0.2397)(1.0) + (5.3751)(0.3636) = 2.1943 in4  
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 Maximum shear stress, which occurs at the outer radius of each member, would be: 
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The alternative solution, using aluminum as the base material: 
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As was done with the axial stress problem, equivalent sections, made from a single 
material, may be drawn and used for calculation of the equivalent polar moment of 
inertia. From there the calculation of the shear stress and rotation may be accomplished 
as we have just demonstrated. 

 
Conclusions and Recommendations: 
 
 This methodology was conceived with the analysis of composite concrete and steel 
structures in mind.  Examples of such members include steel beams with a composite concrete 
slab, steel columns encased in concrete or steel tubes filled with concrete.  Additionally the 
aircraft industry often uses sandwich type composites4, such as an aluminum skin, with a much 
less dense filler material, to significantly reduce the weight of a component.  Similar technology 
is being employed in the automotive industry in the fabrication of vehicle skins and 
components. 
 

This methodology is derived from basic principles and methods already employed in the 
instruction of Mechanics of Materials.  This method has the advantage of giving students a way 
of visualizing the contributions of various components when discussing these specific types of 

= 0.04143 radians = 2.374° 

= 0.04143 radians = 2.374° 

= [(50,000)(1.25/2)(1.0)]/(2.1943) = 14.24 ksi 

= [(50,000)(2.75/2)(0.3636)]/(2.1943) = 11.39 ksi 
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indeterminate problems.  This method, once derived, provides a rapid method of calculation in a 
manner that is consistent with the transformed-section method used in flexure. 
 
 This transformed-section methodology should, just like other methods, be derived in 
class demonstrating it to be based upon sound principles.  Once derived this new methodology 
may be applied readily to both axial and torsional stress problems.  When compared to 
traditional methods of analysis the transformed-section method will give the students a way of 
solving statically indeterminate, composite member problems, of the sort illustrated here that 
may be quicker, simpler and more visually oriented.  In the future testing and sampling to verify 
this hypothesis will be conducted.  The future will also include the expansion of this theory to 
combined stress consideration. 
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