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Introduction 
Complex aerospace systems increasingly rely on integrated software to function, resulting in an industry 
demand for software-savvy aerospace engineering graduates.  To respond to this demand, a significant 
number of MATLAB programming assignments have been incorporated across the aerospace curriculum 
at the Ann and H.J. Smead Department of Aerospace Engineering and Sciences at the University of 
Colorado, Boulder. Lab and homework assignments require students to write a significant amount of 
MATLAB code starting the first semester of sophomore year in the statics and computational methods 
courses. MATLAB programming assignments become increasingly difficult as students progress through 
the undergraduate program, culminating in a year-long senior design course where students design, build, 
and validate an aerospace system, with at least 30% of the work being software-centric. 
  
Discussions with students and faculty suggest that MATLAB proficiency may be a critical barrier to 
success in the sophomore and junior years, possibly resulting in student attrition from the program. To 
prepare for the computer programming demands in the curriculum, students are required to take a 
computer science course in the CS department their freshmen year (typically taken first semester). 
However, between transfer and non-transfer students, a wide variety of computer science courses focusing 
on a number of programming languages are approved for this prerequisite. This, combined with the vast 
range of student programming experiences in high school and second semester freshman year results in an 
incoming sophomore class with a wide spectrum of baseline MATLAB ability. 
  
The first intense MATLAB assignment occurs during the first month of sophomore year in the statics 
course, and requires students to parse an input file, assign variables, and utilize loops and conditional 
statements to develop a script which can solve various static equilibrium problems. In previous years, this 
assignment was completed in groups of three students. However, anecdotal evidence suggested that 
typically a single student with confidence in programming would write the entire code, while the other 
students would assist with the report. This year the assignment was revised to be an individual 
assignment, with the goal that every student would gain critical programming experience. The assignment 
was split into three coding scripts over three weeks, and scripts were auto-graded using MATLAB grader.  
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Figure 1. Histogram showing individual student grades in statics programming assignment. N = 237. 

 
Overall, students generally did well in the programming assignment. However, as can be seen in Figure 1, 
roughly 10% of students did not pass the lab, scoring a ‘D’ (70%) or lower. We are interested in why 
some students struggled with the lab while others succeeded. In this paper we conduct statistical analyses 
to answer the following research questions:  
 
Is there a relationship between students’ grades on the programming assignment and their 

RQ1. Gender? 
RQ2. Grades in the freshman computer science course? 
RQ3. Programming experience in high school or undergraduate education, beyond freshman 

computer science? 
RQ4. Grades in the linear algebra course? 

 
Literature Review  
Prior research has investigated a number of factors that have been hypothesized to influence students’ 
performance in computer science (CS). Three of the most-studied factors are students’ 1) innate aptitude, 
2) environment, and 3) learning strategies in their introductory programming course.  Regarding students’ 
aptitude, there are anecdotal claims for the existence of a “geek gene” where certain students have an 
innate aptitude for CS while others do not [1]. This hypothesis explains the bimodal distribution of grades 
that many CS faculty see in their intro-level CS courses, although evidence suggests that the presence of 
bimodal grade distributions may be overstated [1,2]. However, research has pushed back against this idea 
of a “geek gene” and has found no set of cognitive factors that strongly and reliably predict students’ 
programming ability [3]. As Robins writes, “Maybe there is no ‘geek gene’/innate capacity or 
combination of cognitive or other factors that predicts or accounts for success or failure at programming, 
any more or less than for other domains of learning” [4, p. 351]. 
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Other research has hypothesized that students’ performance in CS is influenced by their environment -- 
their background, their exposure to CS in high school, and their support in learning CS.  Much of the 
literature focuses on student demographics, such as race or gender, as a means to highlight pre-college 
opportunity gaps between these underrepresented students and majority students. Research has shown that 
there are racial and gender disparities in access to high school CS instruction, qualified computing 
teachers, and the physical resources to study CS [5,6]. These high school opportunity gaps can then lead 
to consequential performance gaps in undergraduate CS [7,8]. Traditional social expectations can also 
result in girls being encouraged to pursue CS less than boys [9] or girls experiencing microaggressions 
that discourage them from further pursuing CS [10]. Along these lines, the ethnographic study of an 
undergraduate programming course conducted by Secules et al. shows the combined impact of several 
“mundane and seemingly innocuous” aspects of the course, such as the seating arrangement in lecture and 
the status hierarchy when an experienced student was paired with an inexperienced student for a group lab 
[11]. These aspects of the course all combined to create a culture that projected the implicit message that 
the focus of the study--a female student from a vocational high school--could not succeed in engineering. 
 
Lastly, studies have shown that students’ performance in CS is influenced by their learning strategies in 
their introductory CS course, which are often dictated top-down by the pedagogy and structure of the 
course. Research has shown the most difficult aspects of learning CS for novices are not related to the 
syntax of the language, but rather their mental models of a program--the strategies for designing and 
implementing a program to solve a certain task [4,12,13]. However, as Robins writes, “declarative 
knowledge (e.g., being able to state how a “for” loop works) [...] receives the most explicit attention in 
typical textbooks and CS1 courses, which usually focus on presenting knowledge about a particular 
language” [4, p. 337]. As a result, multiple studies have shown that passing an introductory programming 
course does not imply future programming success.  Soloway et al. found that 38% of students who had 
completed one semester of programming were able to complete an assignment that asked them to write a 
loop to compute an average of a given data set [14]. Similar results were found by McCracken et al., who 
gave a language-agnostic CS assessment to 216 students at 8 international institutions at the end of their 
introductory programming course [15]. In general, students did much more poorly than the authors 
expected.  As they state, “We did answer the question we asked in the Introduction section: Do students in 
introductory computing courses know how to program at the expected skill level? The results from this 
trial assessment provide the answer ‘No!’ and suggest that the problem is fairly universal” [15, p. 132]. 
 
Of our four research questions, three map to the environment. Gendered effects of performance in CS are 
influenced by the social environment, whereas programming experience in high school or undergraduate 
education beyond introductory CS is reflective of the opportunity that students have in their pre-college 
environment. We also take students’ grades in the linear algebra course to be reflective of their 
environment, rather than their ability, because the programming assignment we study involved forming an 
Ax = b matrix from a set of equations. Based on students’ difficulty with this concept in class, we 
hypothesized that having prior knowledge of linear algebra would be helpful on this programming 
assignment. And therefore, students who had the opportunity to take advanced math in high school--and 
therefore the opportunity to take linear algebra during their freshman undergraduate year--would be at an 
advantage. The last research question, the relationship between grades in the freshman CS course and the 
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grades on the programming assignment, is indicative of students’ ability because we do not have the 
knowledge about students’ learning strategies in this freshman CS course. 
 
Programming Assignment Background 
The programming assignment analysed in this paper is the first major programming assignment given to 
students in the aerospace curriculum, and occurs in the statics course during the first month (September) 
of their sophomore year. This assignment was originally developed by Prof. Kurt Maute, and was 
modified for auto-grading purposes by the first author. The overarching goal of the programming 
assignment is for students to create a series of MATLAB scripts which parse a .txt input file of data 
describing a 3D static equilibrium problem with known external forces/moments and unknown reactions 
forces/moments. The MATLAB script must then use the parsed data to formulate a matrix with the six 
independent force and moment static equilibrium equations, and solve this matrix to find the reaction 
forces and moments of the system. Student code must be robust to solve any statically determinate 3D 
equilibrium problem. To do this, students must understand basic MATLAB data types, know how to read 
in and convert data types, be able to index, utilize conditional statements, set up loops, and perform very 
basic linear algebra operations. Note that the prerequisites for the statics course did include a basic 
programming course, but did not include any linear algebra courses. Therefore, this was the first time the 
majority of students has seen any type of matrix multiplication or formation.  The programming 
assignment was individual, given over three weeks, and auto-graded in MATLAB grader. Students had 
two hour lab periods once a week to work on the assignment with an instructor and team of TAs present. 
Prior to each lab period, students were required to watch a 30 minute pre-lab video that reviewed 
fundamental principles necessary to complete the coding assignment for that week. During the first week, 
students had to write a script that could parse the .txt file and define variables for future use. During the 
second week, students had to write a script to take the defined variables, organize them into the six 
independent force and moment equilibrium equations, form a Ax = b matrix with these equations, and 
solve the matrix for x (the reaction forces and moments). The pre-lab video for the second week taught 
the students the basics of matrix multiplication, how to format a system of equations into Ax=b form, and 
worked through a few examples on this topic. During the third week, students had to put the two scripts 
together and solve a number of 3D equilibrium problems with ‘blind’ input files to ensure their code was 
robust to a wide variety of boundary conditions, external forces, and external moments. For each script 
students were given six attempts in MATLAB grader to submit the correct code, but were allowed to test 
their code in MATLAB as many times as needed. 5 hours of lab office hours were offered a week. 
MATLAB grader checks all submitted scripts to ensure certain defined variables are present and the 
correct value. Therefore, MATLAB grader can be vulnerable to hardcoding, in which students ‘hardcode’ 
certain variables to be the correct value to ‘trick’ the grader. For example, if students were required to 
create a loop and iteratively add numbers until x = 100, a student could hardcode by simply defining x = 
100.  MATLAB grader allows the instructional team to see all submitted code, and the TA team carefully 
checked all submitted code to ensure ‘hardcoding’ was not present. Students who submitted ‘hardcoded’ 
code received 0 credit for that particular week’s submission. 
 
Data Collection 
We were the instructors for the sophomore statics course, and therefore had access to all students’ 
programming assignment grades. The College of Engineering Office of Data Analytics provided the 
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authors with secure protected files with student grades from calculus 1, calculus 2, calculus 3, linear 
algebra, and freshman computer science, as well as student gender, race, and ethnicity. We did not 
consider the race and ethnicity variables in our analysis because of low sample sizes for certain groups. 
While it was clear what classes students had transferred from other institutions, the grade for any transfer 
class was not available. The authors developed an optional Qualtrics survey for students in the statics 
course which asked questions regarding student’s pre-college coding experience, the computer science 
courses they had completed, and their current confidence levels with MATLAB. Students were given this 
survey at the end of the semester, and were offered 2 extra credit points on their lowest homework score if 
they completed this survey. Of the 249 students who finished the course, N = 185 students completed this 
survey. A separate optional survey was sent out after the programming assignment was submitted, and 
asked students about the time they had spent on the assignment, and the most difficult aspects of the 
assignment. N = 65 students completed this survey.  
 
Results 
To answer RQ1, the relationship between students’ gender and their grade on the programming 
assignment, we performed a Welch’s t-test to test whether the mean grade on the assignment was different 
between women and men. Figure 2 shows the difference in grades between women and men. While the 
mean grade on the assignment was slightly higher for women than for men (93.4% for women, 89.9% for 
men), we found no evidence to reject the null hypothesis (p = 0.21). Therefore, the data does not support 
the hypothesis that there is a relationship between students’ gender and their grades on the programming 
assignment. While a null result, this is encouraging given the social factors that dissuade women from 
pursuing computer science. 
 

 
Figure 2. Effect of gender on students’ programming assignment grade. N = 255. Error bars show standard 

deviation. 
 
To answer RQ2, the relationship between students’ grades in their freshman computer science course and 
their grade on the programming assignment, we plotted students’ grades on the programming assignment 
vs. grade in the freshman computer science course, where 4.0 is an ‘A,’ 3.7 is an ‘A-,’ 3.3 is a ‘B+,’ 3.0 is 
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a ‘B,’ etc (Figure 3).  The size of each dot represents the number of students with that combination of 
assignment grade and computer science grade. As is expected, the largest dot represents the 67 students 
who got an A in freshman computer science and a 100% on the assignment. However, there was no 
evidence to support the hypothesis that there is a correlation between students’ programming assignment 
grade and computer science grade (Kendall’s rank correlation, p = 0.07762, τ = -0.1). Note that 21 
students who received an ‘A’ or ‘A-’ in the freshmen computer science course failed the statics 
programming assignment. 
 

 
Figure 3. Effect of grade in freshman computer science course on students’ programming assignment grades. N = 
240. Size of each dot represents the number of students with that combination of assignment grade and freshman 

computer science grade. 
 
To answer RQ3, the relationship between students’ programming experience outside of the freshman 
computer science course and their grade on the programming assignment, we used data from the Qualtrics 
survey given at the end of the semester. Of the students who responded, 180 gave information about their 
computer science course history. We grouped students into one of three categories:  little or no high 
school computer science experience (70% of respondents), 1 or more semesters of high school computer 
science experience (20%), and 1 or more semesters of undergraduate computer science beyond the 
required freshman course, regardless of how much, if any, computer science they took in high school 
(10%). Figure 4 shows that all 17 students with advanced undergraduate computer science experience got 
a perfect grade on the programming assignment. However, as expected, the standard deviation of 
students’ programming assignment grades increases as students’ computer science experience decreases. 
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Initial statistical analyses found no difference between groups, however, these statistical results are 
inconclusive due to small sample sizes and a high risk of a type 2 error (accepting the null hypothesis 
when there is indeed a significant difference between groups). 

 
Figure 4. Effect of programming experience on students’ programming assignment grade. N = 180. Error bars show 

standard deviation. 
 

Finally, to answer RQ4, the relationship between students’ grades in linear algebra and their grade on the 
programming assignment, grouped students into 5 categories. Of the 237 students for which we had data, 
54.0% had not yet taken linear algebra and 27.0% were currently taking linear algebra. These two groups 
encompassed our first two categories.  The remaining 3 categories captured the grade distribution of the 
19.1% of students who had completed linear algebra, with 6.8% of the 237 students receiving an ‘A’, 
7.2% of students receiving a ‘B’, and 5.1% of students receiving a ‘C.’ Figure 5 shows that, similar to the 
effect of programming experience, the standard deviation is very small for students who got an ‘A’ in 
linear algebra and much larger for all other categories. Bartlett’s test found the standard deviations 
between groups to be significantly different, p = 0.00. Statistical analysis did find the group of students 
who earned  an ‘A’ in linear algebra had a significantly higher programming assignment grade than 
students who had not yet taken linear algebra. (One-Way ANOVA with Games Howell Post Hoc, p = 
0.001).  
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Figure 5. Effect of grade in linear algebra on students’ programming assignment grade. N = 237. Error bars show 

standard deviation. 
 
Discussion 
Overall, the statistical tests we ran do not directly indicate why some students did poorly on the 
programming assignment. However, the statistical results do shed light on what variables may have 
impacted some students’ success. For example, earning an ‘A’ in linear algebra is beneficial- these 
students have a significantly higher average grade on the programming assignment, with significantly 
lower variation. As the programming assignment requires setting up and manipulating an Ax = b matrix, 
it is not surprising that students who have a solid grasp of matrix theory did well in the lab. Note that 
students who have completed linear algebra are a full year ahead in math, and transferred in both calculus 
1 and calculus 2 (both AP calculus AB and BC exams). Further, the applied math department, which 
teaches the linear algebra class, is known for the rigor of their courses. Therefore, students who have 
completed and earned an ‘A’ in linear algebra likely went to a top-tier high school or transferred in 
significant community college work, and are likely high performing students in general. It is difficult to 
separate if the student’s grasp of linear algebra allowed them to succeed in this lab, or if this subset of 
students will succeed in the majority of assignments thrown at them due to a strong academic foundation 
and excellent study skills. However, a grasp of basic linear algebra matrix formation concepts is 
important; in an optional class survey (N = 65) the majority of the students found formulating the Ax = b 
matrix to be the most difficult aspect of the assignment. Further, we did review the Ax=b concept in 
lecture, and included a Ax=b problem on the exam given immediately after the programming assignment 
was due. Out of all of the problems on the exam, students struggled the most with the Ax=b problem. 
While some literature indicates a positive correlation between math and programming skills [16], other 
researchers have found that once general ability is factored out no relationship exists between a person’s 
overarching math ability and their success in computer science [17]. 
 
Figure 4 suggests a trend of increasing programming assignment grades with increasing computer science 
(CS) instructional experience. We were surprised that prior to enrollment in the university, 75% of 
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students had either severely limited or no prior computer programming experience. Even more surprising, 
there is no significant association between a student’s grade in their freshmen computer programming 
course and their grade in the sophomore programming assignment (Figure 3). There were 21 students who 
got an ‘A’ or ‘A-’ in freshman CS but failed the programming assignment with a failing grade below 
70%. The required first year CS course is half C+ and half MATLAB, requires no programming 
experience, and focuses on basic programming techniques. Students typically take this course the fall of 
their freshmen year, and take the statics course the fall of their sophomore year. It is possible that 8 weeks 
of MATLAB instruction is simply not enough for some students to tackle the parsing and matrix 
formation challenges in this programming assignment, as in Soloway et al. [14] and McCracken et al. 
[15]. Or, it could be that this programming assignment is too open-ended for some students who have 
only completed a single CS course. Note that while we did have access to the detailed freshmen CS 
course syllabi, we were not able to discuss at length with freshmen CS teaching team how open-ended 
their homework and exam coding assignments were. Finally, the students who struggled may have had 
personal or academic challenges external to the statics course which impacted their performance. 
 
Overall, we were encouraged to see no difference in the programming assignment grades between females 
and males. We were unable to examine differences in student performance due to race and ethnicity as 
sample sizes across certain groups were quite low. However, the literature found that differences in 
programming performances amongst various races/ethnicities can often be directly linked to a lack of 
access to good computing instruction and resources [5,8]. Through the survey data, we were able to look 
at a student’s programming experiences prior to this course. The sample sizes in some of the post-college 
programming experience groups were low, and did not allow for statistical analysis to be performed with 
adequate power levels to map results to the larger population. However, trends did appear, and further 
work with large sample sizes could be done. 
 
Conclusions 
This paper reports a first attempt at understanding the underlying variables that impact a student’s 
computer programming ability on sophomore coding assignments in the [name blinded] aerospace 
department. Interesting initial findings include: 

- 75% of students in [name blinded] aerospace department enter the university as freshmen with 
little to no computer programming experience. 
 

- Overall, most students were able to complete the programming assignment with an ‘A.’ 
 

- There are a non-trivial number of students who got an ‘A’ or ‘A-’ in freshman computer science 
but failed the first programming assignment in their sophomore statics course. 
 

- There was no statistically significant difference in programming assignment grades between male 
and female students. 
  

- A strong understanding of linear algebra (as represented by an ‘A’ grade) appears to be helpful in 
this particular programming assignment. 
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Overall, this study highlighted the diversity of student programming experiences in our program. In our 
sophomore aerospace courses we have both students that are very experienced in computer science (CS) 
and have completed multiple university level CS courses, as well as students whose only CS experience 
was the required freshmen computing course taken a year ago. While sample sizes of students in certain 
“programming experience” bins (Figure 4) were too low for statistical analysis, the trends suggest that 
more CS experience is correlated with higher scores on the programming assignment. Therefore, we think 
that an important take-away from this study is that future aerospace CS assignments must be carefully 
designed to have programming and mathematical concepts that are challenging but doable for students 
across this spectrum.  
 
In future work we would like to expand this study by analyzing a larger sample size of students to better 
understand the impact of high school and freshmen CS experiences on aerospace programming 
assignment performance. We hope to differentiate the impacts of  ‘good study skills’ and ‘strong 
programming background’ on final student performance.   We hypothesize that while many students were 
able to complete the assignment with an ‘A,’ the time that students spent on the assignment was highly 
variable and correlated with their programming experiences. An in-depth investigation would require 
additional quantitative data (e.g. detailed surveys of all students) or even qualitative research (e.g. 
interviews with students) to fully understand the variables that impact student programming performance 
in this aerospace department. 
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