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Asynchronous Finite State Machine Design: 

A Lost Art? 
 

Abstract 

 

As taught in most introductory digital circuit classes, design of sequential digital circuits is 

limited to a very strict set of restrictions, usually called “synchronous” finite state machine 

design.  In synchronous design, there is one special signal called the “clock” which controls the 

timing of all state transitions, and all clock inputs on all sequential components in the digital 

system (flip-flops or other more complex components) must connect directly to that one clock 

signal in the system, without exception.  Furthermore, all variables in the system are restricted to 

change only on the clock transition that causes state changes in the sequential components of the 

system.  There is good reason to impose these restrictions in an introductory class.  Working 

under the “synchronous” umbrella protects the designer from many timing problems that can 

occur in systems if these restrictions are not followed.  However, examples abound where 

synchronous restrictions must be violated.  For example, when a manually controlled switch 

input enters an otherwise synchronous system, the manual switch variable can change value at 

times unrelated to the clock transition, violating synchronous restrictions and causing headaches. 

 

In fact, synchronous design techniques, and other related design regimens, are special cases of 

the more general design approach called “asynchronous” finite state machine design.  In 

asynchronous design, there is no special clock signal to cause state changes.  Instead, the state 

machine reacts to changes on the input variables from the environment.  Flip-flops, for example, 

actually are not elementary building blocks of digital circuits as is taught in introductory courses.  

Flip-flops themselves are designed as asynchronous circuits.  The memory in sequential circuits 

arises from the feedback present in asynchronous design to implement states in the state machine 

operation.  In asynchronous sequential circuit design, there are no artificial restrictions on circuit 

behavior.  As a result, however, there are many more concerns that must be addressed by the 

designer in order to ensure correct circuit operation, so asynchronous design is usually omitted 

from discussion in introductory digital courses. 

 

This paper addresses some issues related to asynchronous finite state machine design, and 

includes some important examples of specific asynchronous circuits that have central 

significance in digital design.  Techniques are included here to incorporate asynchronous design 

into lab experiments for advanced digital design courses.  Without an understanding of the issues 

presented here, digital designers must work in a design environment that unnecessarily limits 

what they can do. 
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Background 

 

In digital circuit design, sequential circuits, or finite state machines, are circuits containing some 

sort of memory, as opposed to combinational circuits that contain no memory.  In a 

combinational circuit, the outputs of the circuit depend only on what the inputs are right now.  In 

a sequential circuit, the outputs depend not only on what the inputs are now, but also on the past 

history of the input values, which implies that the circuit includes memory to record that history.  

Most commonly, memory is implemented with circuit elements called “flip-flops” that are 

“clocked” at specific times to update their contents.  The clocking scheme used in a circuit 

design can be very strictly specified, as in synchronous design, where every flip-flop or 

sequential component’s clock signal must connect to a single system clock signal so that all state 

in the system changes at the same time.  The clocking scheme can be more relaxed, as in multi-

phase clocking or a system of several clocks all derived from a common master clock, which 

allows state changes at controllable times in the system operation.  The extreme case is the case 

where there are no clock signals to tell the system when to change state.  This is the 

asynchronous finite state machine case, and is the most general approach to sequential circuit 

design. 

 

Each relaxation of constraints on the clocking scheme used in a sequential circuit creates 

additional concerns that must be addressed by the circuit designer, generally regarding detailed 

timing of state transitions in the circuit.  The strictest system, synchronous design, frees the 

designer from concern about all but the most basic timing details.  The most general system, 

asynchronous design, requires that the designer face many potential timing flaws in the circuit.  

Consequently, introductory digital design courses generally focus on synchronous design.  They 

sometimes allow slight relaxation of the synchronous constraints, but rarely address the design 

freedom and concerns of general asynchronous design.  Textbooks used in today’s digital design 

courses rarely if ever even mention asynchronous design.  The most recent textbook of which 

this author is aware that carefully addresses asynchronous sequential circuit design is the classic 

text by Kohavi
1
, copyrighted in 1978. 

 

The pity is that asynchronous design is the foundation upon which all other sequential design 

techniques rest.  Without a thorough understanding of asynchronous design techniques, the 

reasons for constraints imposed by less thorough techniques remain a mystery.  Flip-flops are 

NOT fundamental circuit components, as is taught in introductory courses.  Flip-flops are 

designed from more elementary components using asynchronous techniques.  The purpose for 

this paper is to remind digital circuit designers that to understand fully the principles they use in 

their designs, they must apply knowledge of asynchronous sequential circuit design. 

 

Basics 

 

Sequential circuits, or finite state machines, are designed around the templates shown on the next 

page.  Figure 1 shows the template for synchronous circuits, where the memory in the circuits is 

implemented with flip-flops that are clocked by the special system clock signal.  Figure 2 shows 

the template for asynchronous circuits.  The memory in such circuits is composed of a simple 

delay.  This delay must be non-zero, but is otherwise unspecified in duration, and usually is 

implemented with the gate delays inherent in the combinational logic portion of the circuit, so 
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there is generally no separate hardware that implements the delay.  The heavy arrows in the 

templates indicate bundles of signals grouped into the four labeled groups.  Asynchronous 

circuits are characterized by the presence of these feedback paths in the design where some 

combinational logic produces an output that depends on itself.  This feedback, and the associated 

delay inherent in the logic, implements the memory of the asynchronous finite state machine. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.  Synchronous template   Figure 2.  Asynchronous template 

 

Figure 3 below shows a classic SR latch, the most fundamental memory circuit studied in 

introductory digital circuit courses.  Figure 4 shows exactly the same circuit, but drawn 

differently to emphasize the single feedback path, which holds the one state variable in the 

circuit.  The circuit remembers which of the two input variables, S or R, was most recently a 1, 

by recording on the output variable, Q, a 1 if it was S or a 0 if it was R.  By realizing that this SR 

latch, the most fundamental memory circuit in any static memory device, is actually an 

asynchronous finite state machine, one realizes the fundamental nature of this topic. 

 

 

 

 

 

 

 

 

 Figure 3. Classic SR latch   Figure 4.  SR latch re-drawn 

 

In the SR latch pictured above, the “memory” in the circuit is actually implemented in the delay 

inherent in the gates themselves.  If the gates somehow had zero delay, this circuit could fail. 

 

Hazards 

 

One interesting characteristic of digital circuits that must be addressed in asynchronous designs 

but that can be ignored in synchronous designs is hazards.  A hazard is present in a circuit if a 

signal in the circuit changes unexpectedly in response to a change in a single input variable.  This 

unexpected change can be either a brief “glitch” to the other value when a signal is supposed to 

stay constant during the transition (a so-called static hazard) or multiple changes on a value when 

the signal is supposed to change just once in response to the transition (a so-called dynamic 
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hazard).  Dynamic hazards arise because of the presence of static hazards, so removing the static 

hazards in a circuit also removes any dynamic hazards.  An example of a circuit where hazards 

cause trouble is shown in Figure 5.  This is an elementary gated transparent D latch, where the Q 

output follows the D input as long as the control input, C, is 1, but latches the current value on D 

when C becomes 0.  Looking at the circuit in Figure 5, clearly when C = 1, the bottom AND gate 

 

 

 

 

 

 

 

 

 

    Figure 5.  Gated transparent D latch, improperly designed 

 

output is 0, and the top AND gate passes through the value on the D input, so the Q output is 

equal to the D input.  When C = 0, the D input is blocked by the top AND gate, and whatever 

value is on the Q output is re-circulated so the Q output remains at its current value regardless of 

D.  This sounds right.  However, examine the circuit if initially D=C=Q=1 and then C changes 

from 1 to 0.  Because of the delay in the inverter, the top AND gate output may become 0 before 

the bottom AND gate output becomes 1, which means that Q goes to 0, which then prevents the 

bottom AND gate output from going to 1 as it should.  The circuit erroneously changes state 

from Q = 1 to Q = 0 because of a hazard in the circuit.  Hazards must be avoided. 

 

Fortunately, static hazards (and thus dynamic hazards) can always be avoided, but sometimes at 

the cost of slightly more complicated circuits.  In this case, Figure 6 shows a modified design for 

the gated transparent D latch that avoids the hazard, and operates correctly.  As can be seen in  

 

 

 

 

 

 

 

 

 

    Figure 6.  Gated transparent D latch, hazard removed 

 

Figure 6, the circuit requires an additional gate, but is now hazard free and will operate correctly.  

Hazards are unimportant in synchronous designs, because as long as variables have settled by the 

time the next clock transition occurs, the circuit operates correctly.  In asynchronous design, 

there is no clock to say when to look, so variable values must be valid at all times, including 

during transitions. 
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Races 

 

A more challenging problem faced by asynchronous finite state machine designers is the 

problem of races.  A “race” occurs whenever two or more state variables must change during a 

transition from one state to another.  The state variables are the signals that feed back through the 

delay in the template of Figure 2.  If only two states are present in a design, thus requiring only 

one state variable to distinguish them, no races are possible.  However, in designs with more than 

two states, thus requiring more than one state variable, races are a concern.  The difficulty arises 

because there is no control on the amount of delay in the feedback path.  If the designer could 

guarantee that if, say, two state variables are changing during a transition, they would change at 

precisely the same time, races would not be an issue.  However, because the feedback delay 

experienced by one state variable is guaranteed to be different from that experienced by another 

state variable, one of the variables will change before the other, taking the state machine to an 

unanticipated intermediate state that may well lead to improper machine behavior. 

 

At a given time, an asynchronous state machine is either stable, or unstable.  The machine is 

stable if the next state produced by the combinational logic is the same as the present state 

represented by the value of the state variables.  In other words, there are no transitions in the 

process of propagating through the delay.  If any next-state variable is different from its 

corresponding state variable, the machine is unstable, meaning that at least one variable 

transition is propagating through the delay that will eventually result in a state change.  Normal 

operation of asynchronous state machines begins in a stable state.  Then some input variable 

changes, possibly changing some next-state variable and putting the machine in an unstable state.  

When that changing value emerges from the delay and changes a state variable, ideally the 

machine is once again stable. 

 

In order to avoid problems caused by races, the designer must carefully assign values of state 

variables to represent the states of the system in such a way that two states which transition 

between each other differ in state assignment on exactly one state variable.  Thus, to change from 

one state to another, only one state variable must change, and there is no race.  Finding such a 

state assignment is tricky, and is not always possible.  In the synchronous design case, state 

assignment is arbitrary, and any choice will lead to a functioning solution.  In the asynchronous 

design case, state assignment is crucial to avoid races. 

 

When a designer finds a situation in which no state assignment is possible to avoid races, there 

are options to try.  Sometimes a race is a “non-critical” race in which the final state reached is 

correct regardless of the order in which state variables change.  Non-critical races can be 

tolerated, but races in which the final state depends on the order in which variables change, or 

“critical races,” must be avoided to guarantee proper machine operation.  Another option is the 

introduction of “cycles,” or sequences of unstable states through which transitions pass, in order 

to avoid a troublesome transition that leads to a critical race.  These solutions require insight and 

creativity on the part of the designer, rather than the mechanical application of some design 

process as taught in introductory digital design classes.  The good news is that a solution that 

avoids races is always possible, although it may lead to an increase in circuit complexity.  The 

ability to handle asynchronous sequential circuit design is one quality that distinguishes good 

digital circuit designers from run-of-the-mill designers. 
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More! 

 

The troubles faced by asynchronous finite state machine designers do not stop here.  There is 

another type of hazard called an “essential hazard” that sometimes occurs in these designs.  

Essential hazards arise because of delays in the combinational logic that swamp the delays in the 

feedback part of the state machine, leading to improper operation.  Finding and fixing essential 

hazards, unfortunately, requires detailed analysis of worst-case delay paths through the 

combinational logic portion of the circuitry, and sometimes requires adding delay padding to the 

feedback path of the circuit to ensure that the feedback delay overcomes other delays in the 

circuit. 

 

Asynchronous state machines are designed under “fundamental mode” restrictions, which 

specify that only one input variable can change at a time, and only when the machine is stable.  

No other input variable may change until the state machine finishes its response to the first 

change and reaches a new stable state.  This restriction is the origin of the “set-up” and “hold” 

time specifications always seen on data sheets for flip-flops or other sequential devices.  

Sometimes the fundamental mode restrictions can be relaxed a bit, but if they are not followed, 

unpredictable or non-deterministic behavior of the state machine can result. 

 

Incorporating Asynchronous Design in the Curriculum 

 

In the course “Digital Computer Circuits” at UMD, a second course in digital circuits, the last 

three weeks of the semester are devoted to asynchronous sequential circuit design, and students 

perform two lab exercises in which they design and build asynchronous finite state machines.  

These students already have experience with synchronous design, and also with various 

departures from the synchronous limitations, but the asynchronous design material relaxes those 

limitations even further to allow students to understand the fundamental nature of digital 

sequential design and to see the origins of the restrictions imposed by more rigid design 

strategies.  Students appreciate the opportunity to see how information they have learned from 

previous courses fits into the “big picture” of digital design. 

 

The first lab exercise performed by students in the area of asynchronous design involves 

designing and building a circuit that needs just two states, and therefore just one state variable, or 

feedback variable.  This eliminates the need to be concerned about races in the circuit, and 

students can focus instead on avoiding hazards and minimizing circuit complexity.  The circuit 

typically uses two debounced switch inputs, and must respond to some specific sequence of 

switch closures by activating an output variable appropriately. 

 

The second asynchronous lab exercise involves designing and building a circuit that must use 

more than two states, and thus has more than one state variable, or feedback variable, so that 

races on the state variables during transitions must be avoided.  For example, students have 

designed circuits that capture data from one input variable any time a second input variable 

changes, either 0 to 1 or 1 to 0, comparable to a D flip-flop that triggers on both edges of the 

“clock” input rather than just the rising or falling edge.  Labs must be designed carefully to avoid 

assignments that involve essential hazards because debugging a circuit with essential hazards 

requires detailed timing analysis and simulation beyond the scope of the class. 
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Asynchronous finite state machine design, once understood, is accomplished with very simple 

circuits involving only individual gates, with no sequential components or higher levels of 

integration involved.  This is considerably simpler than the complex circuits students have been 

building earlier in the semester, such as circuits implementing a multiplier, stack, FIFO, and 

other structures.  Students are relieved to find that asynchronous circuits, although tricky to 

understand conceptually, are easily implemented on their breadboards.  These lab exercises are a 

comfortable, relaxing way to end the semester in the lab for this class. 

 

Summary 

 

Designers of asynchronous finite state machines must consider many characteristics of their 

designs that can be ignored by designers working under more restrictive limitations.  

Synchronous design, as taught in introductory classes, relieves the designer from these concerns, 

but limits the kinds of results that can be achieved.  Only by understanding the fundamental, 

asynchronous design process can digital designers fully realize the flexibility of digital circuits.  

The asynchronous state machine design process is a crucial foundation upon which digital design 

must rest. 
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