
Session 2659

Automated Measurement of MOS Capacitance and Determination
of MOS Process Parameters in The MicroFabrication Laboratory

Mustafa G. Guvench
University of Southern Maine

Abstract

This paper describes, (1) how to inexpensively automate measurement of MOS diode C-V
characteristics by employing standard test equipment available in a computer integrated
electronics instructional laboratory, and (2) a technique that facilitates accurate extraction
of MOS and structural parameters such as the threshold and flatband voltages, the gate
oxide thickness, and the semiconductor doping concentration from the acquired data for
the evaluation of an MOS device fabrication process in a microfabrication laboratory. Low
cost, simplicity, and accuracy warrant adoption of both for instruction as well as research.
The extraction technique is based on a nonlinear mapping of the C-V data which helps
clearly demarcate the three modes of the MOS operation, accumulation, depletion, and
inversion. It is also shown that the slope of the resulting curve yields an accurate measure
of the semiconductor substrate doping. The technique and its accurate yielding of doping
have been verified theoretically with MathCad simulations. The measurement setup and
the extraction technique have been used to evaluate the MOS samples made in-house as
part the microfabrication course taught at the University of Southern Maine.

1. Introduction

The Metal-Oxide-Semiconductor  structure, universally referred as the “MOS”, beside forming
the basis of the working of the MOS Field Effect Transistor (MOSFET) which is the backbone of
our integrated circuits, lends itself as a diagnostic tool for determining the quality of the process
used in the fabrication of an integrated circuit. Therefore, it constitutes an essential part of
semiconductor wafer fabrication as well as semiconductor device physics and deserves emphasis
as an instructional tool and fundamental background status in the microelectronics education,
both undergraduate and graduate [3]. However, the equipment available for MOS capacitance
testing is either too specialized and expensive, making it a “push-button” experience and
unaffordable, or very crude and manual, making it too time consuming to use as an instructional
tool in a class setting. Detailed discussions of the MOS physics, MOS capacitance theory and
measurements can be found in the literature (Sze [5], Streetman [6] and Schroder [7]). Simply
stated, the MOS structure, since it is a sandwich of conductor-insulator-semiconductor,
constitutes a capacitor whose capacitance varies in response to the total voltage applied (please
see Figure 1). This variation is due to the semiconductor which can be depleted  of its majority P
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carriers to a certain depth by the repulsive electric field forces created by the voltage applied to
the metal (gate) and effectively adding another insulating layer of variable thickness to the oxide
above it. Therefore, the capacitance, starting from its maximum which is for fields attracting the
majority carriers to the semiconductor’s surface (the “accumulation” mode) decreases steadily as
the field is reversed to cause “depletion” of them near the surface until the oppositely charged
minority carriers are attracted in large numbers to the oxide interface to shield the depletion layer
from further increases in the field. At that point (1) the depletion thickness stops increasing, and
(2) its capacitance is compromised  by a leakage resistance due to the traffic of the minority
carriers from the bulk to/from the inversion layer. In a MOSFET structure the device starts
conducting through the inversion layer, i.e. it turns on. In the accumulation and depletion modes
the minority carriers due to their small number cannot affect the C-V characteristics. However
after the onset of inversion and particularly at low frequencies when the depletion capacitance
has a high impedance they can effectively short it with the leakage resistance they introduced in
parallel and bring the measured capacitance back up to the oxide capacitance value. At high
frequencies (1 MHz and above) this effect is minimal as well as the complications introduced by
interface states between the semiconductor and the oxide [5]. Therefore, high frequency C-V
measurements are preferred when the minority carriers and their interaction with interface states
are not of interest.

Figure 1. MOS Structure and  C-V Characteristics

In this paper a C-V measurement set-up built by adding an inexpensive 1 MHz capacitance meter
to the standard computer-integrated-electronics laboratory benchtop equipment is shown to be
effectively used to evaluate the quality of the MOS structures processed in a MicroFabrication
laboratory. The tools required are a standard computer-integrated-electronics(1,2,3) laboratory
bench set comprising of one each of GPIB interfaced digital multimeter, digital oscilloscope, P
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function generator, and a DC power supply. The GPIB interfaced instruments are controlled by a
personal computer which serves for data acquisition and data processing as well as control. Such
computer-integrated-electronics laboratory setups are replacing non-computer-interfaced
equipment in electrical engineering laboratories. Guvench has shown that such laboratory
equipment can be used to serve not only as electronic test bench but for in-situ tools for
electronic design automation, design verification, device characterization, and SPICE model
parameter extraction as an integral part of undergraduate electronics/ microelectronics/VLSI
curriculum [1,2,3].

Figure 2.  The C-V Measurements Setup

With the addition of a Boonton 72BD 1 MHz capacitance meter which comes with analog and
digital outputs and with the appropriate software to interface the personal computer this setup is
converted into an automated capacitance-voltage measurement system. The software, given the
range of the voltage bias, sweeps the bias to cover the accumulation through the depletion into
deep inversion and creates a data file in a suitable format which can be imported into any
standard spreadsheet program for data processing and plotting. QuattroPro has been used to
extract MOS oxide parameters such as the oxide thickness and capacitance, the MOS threshold
and flat band voltages, the interface state charge, and interestingly, the semiconductor substrate’s
doping concentration. The same setup can also be used for Schottky and P-N junction
capacitance measurements for doping, barrier-height, and built-in potential determination, or for
determining bipolar and FET transistor SPICE model capacitances. In this paper we are
concentrating on the use of such a setup as a tool for evaluating the quality of the MOS structures
made in a MicroFabrication laboratory as an enhancement to a Silicon Device Fabrication course.
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2. The Automated C-V Measurement Setup

The computer-integrated-electronics equipment set used consists of a 120 MHz 586 PC
controlling via IEEE 488 bus a Tektronix AFG 5101 arbitrary waveform generator, a Tektronix
DM 5120 digital multimeter, a Hewlett-Packard HP 54501 digital oscilloscope, and a Tektronix
PS 250 dc power supply. This set is suitable for ac/dc current, ac/dc voltage and dc resistance
measurements.

For MOS C-V measurements the sample needs to be applied a bias voltage which will be stepped
from accumulation to inversion, and a small signal sinusoidal source (about 10 mV amplitude)
for capacitance determination. Although, in principle, it is possible to use the equipment listed
above to measure impedance, therefore a pure capacitance, the bandwidth of limitations of the
multimeter and the resolution of the oscilloscope precludes such an attempt. A Boonton 72BD 1
MHz capacitance meter which has a capacitance range of 0 - 2000 pF was preferred. The
Boonton 72BD is inexpensive and has an analog output and a bias input port separate from the
sample connections for noninterference with parasitic capacitance from the bias connection. It
also allows shielded connection to a sample box for low noise. The sample box contained a
vacuum chuck with embedded heater and thermocouple facilitating also temperature cycling for
oxide ion drift experiments. Figure 2 gives a schematic representation of the setup.

Figure 3. Measured MOS C-V Characteristics
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A home developed data acquisition software named “CIE-IV3.EXE”, originally written in Quick
Basic for automated measurement of transistor I-V characteristics was modified to sweep the
waveform generator as a stepped dc bias source and measure the C-V characteristics by relying
on the Boonton capacitance meter to do the conversion from capacitance to dc voltage. The setup
has only one meter. Guvench’s [2,3] technique of switching the multimeter between the
voltmeter and the ammeter modes was employed to save from the cost of adding a second
multimeter to the setup. The digital multimeter, under the control of the CIE-IV3 software to be
in its “DC Volts” mode first measures the bias voltage applied to the sample through its voltage
input terminal. It is then switched to the “DC Amps” mode to measure the dc current passing
through its current input terminal. The sample’s capacitance is indirectly measured through this
current which is generated by a calibrated resistor connected to the analog output of the
capacitance meter. The “CIE-IV3” program generates “comma delimited” ASCII files of the
capacitance against the bias voltage, which can be imported into QuattroPro or Excel for
graphing and processing. Figure 3 displays the C-V results obtained and graphed with QuattroPro
for a sample measured in this way. The dc power supply shown connected in series with the
stepped waveform generator is for the purpose of supplementing the limited range (± 9.8 V) of
the waveform generator. Typically a 100 point data set measurement takes about 3 minutes, i.e.,
the sweep is slow enough to keep the MOS capacitance in quasistatic equilibrium in inversion to
avoid undershooting into deep depletion.

3.  Models for MOS Capacitance Characteristics

For an MOS structure built on a uniformly doped semiconductor the Poisson equation [5] can be
solved exactly to get the electric field, Es  and the total charge the semiconductor has stored in its
space charge (or depletion) layer, Qs  as a function of the electrostatic potential ψs its surface has
reached under the influence of the gate field applied. The resulting equations are given below.

Ε s ψ s
..

..2 k T
.q L D

ψ s

ψ s

F ψ s

Q s ψ s
.ε Si Ε s ψ s

where   β = q / kT  is the inverse thermal voltage,  εSi is the dielectric permittivity of the
semiconductor and Debye length given by

L D
ε Si

..q p po β

is the extrinsic Debye length. The semiconductor is assumed to be p-type with a majority carrier
concentration of ppo and a minority concentration of npo  . F(ψs) is a function defined as ,
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The total voltage appearing across the MOS structure is the summation of the voltage drop in the
oxide and the voltage drop in the semiconductor (i.e. its surface potential).

V MOS ψ s ψ s
Q s ψ s

Cox

Note that the derivative of the charge with respect to the surface potential gives the effective
capacitance of the semiconductor’s space charge layer. It can be shown that this capacitance is
given by
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which has to be connected in series with the oxide layer’s capacitance  Cox =  εSi / tox  , resulting
in

CLF ψ s
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Note that in all of the above minority carriers are included via the terms involving npo in the
equations. Therefore, the resulting capacitances will correspond to the low frequency (LF)
measurements. If the high frequency CHF-V curves are needed the equations written above can be
used by eliminating npo multiplied terms which stand for the minority carriers. However, such an
elimination also takes out the screening effect of the inversion layer on the space charge,
resulting in a representation of a case named “deep depletion”. A simple solution is to employ the
majority-carrier-only equations until the surface potential reaches a value corresponding to the
onset of heavy inversion. This condition is taken as  ψs = 2.φFP  where

φ FP
.

.k T

q
ln

N A

n i

Beyond that point the capacitance is taken to have reached a flat minimum. Although the
equations written above do not lead to a closed form for CLF and CHF vs terminal voltage, their
curves can be plotted by stepping the common variable in them, i.e., ψs . MathCad has been
found to be a powerful and convenient tool for this purpose. As a matter of fact the curves given
in Figure 1 are the results of such calculations with the exception that the capacitances plotted are
normalized with respect to the oxide capacitance. P
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It is noted that neither the experimental C-V curve of Figure 3 nor the theoretical curves of
Figure 1 display sharp changes that can identify the transition points between accumulation and
depletion (named the flatband voltage, VFB ) nor between depletion and inversion (named the
threshold voltage, VT). Therefore, MOS C-V curves cannot deliver precise values for the flatband
voltage, VFB nor the threshold voltage, VT  .

A nonlinear mapping/transformation of the C-V relationship was seeked that would render a
sharp transition between the modes of MOS operation. Figure 4 shows the result of plotting 1/C2
vs MOS bias voltage instead of linear capacitance versus voltage. In these plots “ICS” is used to
mean “Inverse-Capacitance-Squared”. Both high frequency and low frequency capacitances are
included for comparison, and an approximate capacitance calculated using “depletion
approximation” as well. All of the resulting curves strikingly show straight line behaviour in the
depletion region. It is also observed that the intersection of this straight line with the asymptotes
of minimum and maximum capacitance yield  exactly zero for MOS bias at the flatband
transition and exactly   ψs = 2.φFP at the inversion threshold point. This behaviour was
consistently displayed by all samples whose doping concentrations were varied between  1014

/cm3 and 1016  /cm3 implying a universality.  ..

The “depletion approximation” capacitance calculations are done by assuming that (1) the space
charge in the semiconductor is solely due to majority carriers, and (2) the space charge edge is
abrupt at a depth of  xd . These conditions imply the total space charge to be  q.N.xd , and the
MOS voltage drop and capacitance  to be

V xd

..q N A xd

Cox

..q N A xd
2

.2 ε Si

C xd
1

1

Cox

xd

ε Si

Note that IC stands for inverse of capacitance and ICS stands for inverse-capacitance-squared.
Then,

d(ICS)/dV = 2. (IC) . (d(IC)/dV) = 2.IC.(dxd /dV) / εSi

From above,     dV/dxd =  q.NA . IC ,  and therefore,

d(ICS)/dV = 2 / ( q.NA. εSi )

This last expression shows that the slope of  the  ICS  versus bias voltage curve in the depletion
region is a constant as observed and it conveniently measures the doping concentration of the
semiconductor.
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4. The Extraction Procedure

The section above has shown that,

(1) Square of the inverse-capacitance-of an MOS structure is expected to be vary linearly with
the applied bias voltage in the depletion region;
(2) Its slope yields the doping concentration;
(3) Its intersection point with the maximum capacitance asymptote yields the flatband voltage,
VFB ; and
(4) Its intersection point with the minimum capacitance asymptote yields the onset of heavy
inversion or the threshold voltage, VT  .

Figure 5. Inverse-Capacitance-Squared Curve

The conclusions drawn above were applied to evaluate the MOS capacitor sample whose high
frequency C-V curve is shown in Figure 3. Note that the capacitance minimum of the
experimental C-V curve is on the left, implying that the MOS sample was actually built on an n-
type rather than a p-type semiconductor. The simplicity of the mathematical manipulation
involved allowed a spreadsheet program such as the QuattroPro to be employed without
necessitating custom-made programming to be developed in a high level language.

Figure 5 depicts the ICS values calculated and plotted as a function of the bias voltage. Also
included are the asymptotically drawn three straight line segments. The segment in the middle
represents the depletion region where the ICS curve is expected to behave like a straight line, and
it does. In this range the slope is also at its maximum. The other two are the asymptotes P
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corresponding to the minimum and the maximum capacitance. From the intersection points of
the straight lines the flatband voltage is determined to be - 3.65 volts, the threshold voltage to be
- 5.1 volts. The maximum capacitance value of  207 pF, with the area calculated from the 1.25
mm diameter of 0.01227 cm2  yields the oxide thickness to be   2056 Angstroms. Note that the
ICS values plotted include the area of the capacitor. Therefore, in the slope calculations square of
the area multiplies the slope read from Figure 5. The slope value calculated (4.83 x 1015 )
predicts the doping of the semiconductor to be 2.5 x 1015 /cm3 .

The flatband voltage of an MOS capacitor is affected by the metal-semiconductor work function
difference, φMS and the charges residing in the oxide and at the semiconductor-oxide interface.
The contribution of the latter depends on their distribution relative to the interface as well as their
density. The distribution cannot be obtained from the flatband voltage. However, by making the
assumption that these charges are concentrated at the oxide-semiconductor interface one can
write,

VFB =   φMS  -   Qss / Cox

Using     φMS   =  0.28 volt   from Streetman[6]  the equivalent interface charge density   ( Qss / q )
is determined to be 3.5 x 1011 charges / cm2  for this sample.

5. Discussions and Conclusions

The samples were prepared from  3-inch diameter N-type (111) cut Silicon wafers with nominal
resistivity range of  1 - 8 ohm-cm. This corresponds to an approximate range of  ( 0.5 - 4 ).1015

/cm3 doping concentration. The wafer “A” had measured a doping level of 2.1015  /cm3 with a
four point resistivity probe prior to the processing which is consistent with the doping value
extracted above. Wafers were dry oxidized at 1050 degrees Celcius at varying times to yield
oxide thicknesses from 1000 to 4000 Angstroms. Aluminum dots of 1.25 mm diameter were
formed via vacuum vapor deposition in a turbomolecular pumped Denton 602 vacuum system
Each 3-inch diameter silicon wafer made a total of 264 of the 1.25 mm diameter Aluminum gate
circular MOS diodes, large enough in number for use in a class setting as an enrichment project
for a microfabrication course taught by the author at the University of Southern Maine.

The measurement setup and the MOS  procedures outlined in this paper were used by the
students to characterize the distribution of the doping density, oxide thickness, flatband and
threshold voltages and the interface equivalent oxide charge on these wafers with success.

The C-V measurement results obtained from them turned out to be consistent with the expected
values of oxide thickness, doping and fixed oxide charge showing that the technique presented
and the procedure outlined in this paper were reliable and useful in addition to being simple and
inexpensive, therefore, suitable for instructional use as well as research.

.......................
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