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Early Predicting of Student Struggles Using Body Language

Abstract

The accuracy of RGB-D sensing has enabled many technical achievements in applications such 
as gamification, task recognition, as well as pedagogical applications. The ability of these sen-
sors to track many body parts simultaneously has introduced a new data modality for analysis. 
By analyzing body language, this work can predict if a student will struggle in the future, and if 
an instructor should intervene. To accomplish this, a study is performed to determine how early 
(after how many seconds) does it become possible to determine if a student will struggle. A 
simple neural network is proposed which is used to jointly classify body language and predict 
task performance. By modeling the input as both instances and sequences, a peak F Score of 
0.459 was obtained, after observing a student for just two seconds. Finally, an unsupervised 
method yielded a model which could determine if a student would struggle after just 1 second 
with 59.9% accuracy.

1 Introduction

In this work, the role of machine learning for planning student intervention is investigated. 
Specifically, t his w ork a sks t wo q uestions: ( i) C an a  s tudent’s s truggles b e p redicted based 
on body language? (ii) How soon can these struggles be predicted? Identifying early signs 
of student struggles with a task has many benefits. Often, teachers are in charge of many 
students, so predicting future struggles would allow them to direct their attention where it is 
most needed.

In advanced settings, students are occasionally asked to perform tasks that carry risks 
(e.g., chemicals in scientific labs, machinery and equipment in engineering labs, etc.). 
Students struggling may inadvertently injure themselves or others, and this may not always be 
obvious to the instructor, given that instructors are often in charge of dozens of students and 
cannot focus on all simultaneously. Studies have shown that students who struggle for too 
long become more difficult to teach, correct, and can encounter difficulties when gaining 
competency2,25.

Off the shelf depth-enabled sensing devices (RGB-D) such as the Microsoft Kinect have en-
abled the automated tracking of several people in a frame at once. By leveraging this technol-
ogy as well as machine learning, a model is created which can predict if an instructor should 
intervene with a student before the student begins to struggle.

Predicting if a student might struggle with a task is an ambiguous goal. For example, what 
defines struggling (e.g., bottom half of participants, slower than a target determined by an 
expert, etc.)? An additional concern is how quickly should a prediction be made. If a 
student shows signs of struggle early, intervention may prevent them from learning on their 
own. 



Similarly, a student who struggles for too long may grow frustrated and become resistant 
to intervention. This work considers several values for each of these variables, in order to 
assess the proper values for planning intervention.

In short, this work aims to predict a binary variable indicating if the student ultimately struggles 
with the task. Inside this problem are several subproblems. First, how should this binary vari-
able be set? Second, at what point is the highest accuracy achieved in making this prediction?
Finally, is this accuracy best achieved by a system which views student activity as a sequence 
or as independent observations?

This work is organized as follows: Section 2 discusses the related work. Section 3 and Section 4 
detail the experimental method used. Section 5 discusses the findings a nd S ection 6  outlines 
future work.

2 Related Work

2.1 Human Data Analysis

New technology in human sensing has lead to an explosion in work in activity recognition, 
anticipation, and other related fields. One major motivation for this interest i s in facilitating a 
better working relationship between people and robots. Koppula and Saxena created a model 
which allowed a robot to anticipate what a human might do next, and was able to move to 
assist13. Mainprice and Berenson suggested a similar idea which allowed robots to plan ma-
nipulation of objects with a human17.

Humans as a subject of machine learning is a very active area of research. Some straightforward 
human tendencies have been effectively modeled with machine learning such as predicting if 
a human will continue to walk in the same direction21. Other advancements have enabled the 
study of human affect and emotion as it pertains to tasks. The major focus of this work has 
been in using computer vision to ascertain emotion (such as happy or frustrated), and studying 
performance. Many approaches to ascertaining affective states have been proposed6,22. For 
example, the CERT toolbox allows real time estimates of emotional state16.

These approaches mostly leverage 2D (video) data, and hence are limited by that medium. The 
advent of depth enabled sensors has allowed real time pose tracking for humans, which has 
been used for body language studies11,28. This has been used to quantify emotional states during 
lectures5, provide feedback to public speakers19, and to study human robot interaction18. These 
previous works each demonstrate that enough information is contained in human pose and body 
language to predict a broader factor, such as emotion or satisfaction with an interaction. This 
method proposed in this work takes this one step further and investigates at what point can 
a computer automatically predict struggles.

2.2 Educational Machine Learning

Machine learning in educational settings considers many data modalities, to help students and 
instructors accomplish their educational goals24. Education settings generate many different 
types of data, including text and video. A particularly active area of research is the massive 
online open course (MOOC)12. These are courses with large numbers of people enrolled, which



take place via a computer. One of the features of MOOCs which has been extensively studied 
is the textual data of students discussing the course in forums. Text data is highly structured 
and thus lends itself well to being mined for sentiment26, though the utility of this is not always 
clear27. Other work leverages student interaction with a computer tutor to serve as an automated 
assessment tool23. Modeling student progress as a distribution of skills has enabled educators 
to determine underlying patterns which indicate the abilities needed to succeed in a subject 
matter15.

Predicting student performance is an active area of research in the educational community. 
A highly accurate prediction has many benefits, including early intervention, and appropriate 
allocation of instructor resources. Predicting student performance given student data is a two 
pronged problem. Measuring student performance is constantly shifting, even as new models 
for mining student data are being proposed. Baker and Inventado give an overview in their 
review4. Many methods rely on student surveys8, grades10, or propensity to drop out7. At 
the same time, many advances have been made in both input and data modeling. Baker et al. 
detected students affect based solely on their interaction with an online tutor3. San Pedro et al. 
proposed a similar system for determining student affect20.

The use of commodity off the shelf computer hardware such as depth enabled sensors has 
seen some use in educational settings. For instance, Alexiadis et al. proposed an application 
of the Kinect for assessing dance performances1. Kyan et al. further studied the use of this 
technology for ballet training14. D’Mello et al. used Kinects for capturing student-teacher 
interaction9. These works demonstrate the utility of low cost depth enabled sensors for easily 
capturing physical tasks, as well as human dynamics. The method proposed in this work builds 
on that by determining if student body language can be used to predict student performance in 
physical tasks, and determining at what point can an optimal determination be made.

3 Method

This method will determine if there are early body language predictors of poor task perfor-
mance. For example, consider a student in an engineering laboratory, attempting to perform a 
task. This method supposes an environment where the student is being monitored by a RGB-D 
sensor (such as a Microsoft Kinect). This sensor and attached system is tasked with monitor-
ing the student for signs that they may struggle, so that an instructor can aid them. Since it is 
an engineering laboratory, they may be working with dangerous equipment, further motivating 
this work. This method will determine in detail how much time is needed before an accurate 
prediction of student struggle can be made.

3.1 Data Description

The primary data modality of this work is joint coordinates of the human body. The advent of 
RGB-D sensors has also brought extremely accurate joint locations sensed extremely quickly. 
For a student in a laboratory environment, these sensors can track the student as they move 
through space, and provide joint data to the system, the sum of which is the students overall 
body language and pose. This data is defined by some number of joints J (this can vary by 
software implementation or hardware limitations), each of which has several pieces of data 
associated with it. In particular, three coordinates in 3D space, two coordinates in 2D space,



Figure 1: Body data of a student gathered performing an action

and a quaternion of values which give its orientation with respect to the parent joint (i.e. the
angle). A visual description of this can be seen in Figure 1. The target data is the variable
which this model will predict. In this case, student performance will be measured by how long
it takes them to perform a task.

This model considers this input in two formats: individual input (i.e. snapshots in time), and
sequential input (i.e. short clips of time). These two inputs will clarify whether it is more
predictive to consider sequenced information or as independent variables. It is also important
to determine not only if low task performance can be predicted, but at what point can this
performance be predicted most accurately. Therefore, different time periods are considered as
the threshold for determining failure (in one second increments, first second, first two seconds,
and so forth). This addresses the trade-off between waiting too long to intervene and making a
highly accurate decision to intervene.

3.2 Model Definition

Figure 2: A neural Network with two hidden layers.

Two primary types of models are used in this work. The first is a multilayer perceptron, similar
to the generic network seen in Figure 2. This is a type of neural network which consists of
several layers of fully connected neurons, interspersed with a non-linearity. Briefly, a neural
network consists of neurons, connected to one another in layers. These neurons are simple



mathematical machines which perform a mathematical operation given by Equation 1:

y = f(w × x+ b) (1)

where y is the output, x is the input, f is a (typically non-linear) function, w is a learned weight,
and b is a learned bias. By combining matrix multiplication and non-linear functions, neural
networks have proven very effective at studying more complex categorization problems, such
as those discussed in this work. This class of networks has been shown to perform extremely
well at multi-dimensional classification tasks, such as the one described in this work.

The other type of model employed in this work is a recurrent neural network. These networks
have been extremely successful in modeling temporal data, that is, data which is gathered
over time. One of the most common forms of recurrent networks is the Long Short Term
Memory (LSTM), which allows networks to remember and eventually forget past input, using
a concept called a forget gate. LSTMs are commonly used for sequence classification of multi-
dimensional data, for tasks such as sentiment classification of textual data. In a way, this work
also classifies sequences by sentiment, where the sentiment is determining if the student will
struggle and needs attention.

3.3 Model Testing

Figure 3: Confusion matrix showing the two types of error.

The models trained for this purpose will be tested for precision (Equation 2) and recall (Equa-
tion 3).

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

where T P is the number of true positives (that is, correctly identified cases of students strug-
gling), F P is the number of false positives (those incorrectly identified as struggling), and FN 
is the number of false negatives (those incorrectly identified as not s truggling). An illustration 
of this is shown in Figure 3. For example, in this case, a false positive would result in an inter-
vention where one was not needed, and a false negative would result in no intervention where 
one was needed. The F-Score metric is simply the harmonic mean of precision and recall.

4 Case Study

This case study considers students who were asked to perform three tasks in an engineering 
design setting. These students were drawn from an introductory engineering design course.



Figure 4: A student performing one of the tasks in this work.

They were tasked with hammering two nails and a screw into a block of wood. The purpose
of the screw task was to induce the student to struggle (as hammering a screw into wood is
difficult). Having a task designed to be struggled during can be helpful when exploring how
to best define the concept of struggling (e.g. the threshold discussed above). An image of a
student working on one of the tasks is shown in Figure 4.

Before beginning, the raw X, Y, Z data (taken in meters), is normalized to the distance between
shoulder and opposite hip, as well as centered about the head. This helps account for the
variation in subject size and location in the frame. For example, this will avoid any confusion
about students who are on the right side of the space vs those on the left. Additionally, this
makes the model robust to changes in subject height, so that a tall subject and a short subject
with similar body language are compared fairly.

5 Results

5.1 Thresholds

Before determining the predictive ability of body language for task struggle, the identification
of struggle must be first recognized in the data. Figure 5(a) shows the breakdown of each of the
three activities and how long it took for individual students (note that the values are counted in
frames of a 30 FPS video). Normalizing these distributions for standard deviation and mean,
can be seen in Figure 5(b).

From this plot, it is clear that student performance varied very little in the first two tasks. There
are also a few clear outliers in these tasks. However, the third task, hammering a screw into a
board, has a much wider distribution. Finding the appropriate threshold is a critical part of this
task. First, students who took more than 1.644 (95% coverage on a normal distribution) times
the standard deviation are considered to be struggling. In practice, this highlighted 7 students
who struggled, two each on the nail tasks and three on the screw task. One of the students who
struggled with Nail 2 also struggled with Screw, otherwise the other 5 instances are 5 distinct
students.

5.2 Time Cutoffs

One of the points of interest for this work is at what point does the system have enough informa-
tion to make an accurate decision. To begin, the observations (of both position and orientation),
are considered as independent observations. While it seems logical that sequential modeling



(a) Time taken by each student, per activity (b) Unit norm distribution of activity time

Figure 5: Time distribution of activity data.

Individual Recurrent
Precision Recall F Score Precision Recall F Score

Seconds

1 0.199 0.367 0.258 0.080 0.133 0.100
2 0.161 0.222 0.186 0.300 0.545 0.387
3 0.190 0.211 0.200 0.092 0.176 0.121
4 0.101 0.142 0.118 0.628 0.391 0.482
5 0.049 0.087 0.062 0.359 0.264 0.305
6 0.000 0.000 0.000 0.351 0.257 0.297
7 0.167 0.213 0.187 0.219 0.260 0.238

Table 1: Results for 95th percentile struggle threshold.

would yield more information, this has a few advantages. For one, it is faster, allowing for this
to run on a portable system. It also allows for a cascading model to be employed, which can
analyze these independent predictions to make a final more accurate determination.

In order to analyze this time cutoff, several values were proposed. The first n observations
for each student performing an activity are used to train this model, where n is a variable
corresponding to the amount of time needed. The results of this can be seen in Table 1. While
there is a general trend of increasing accuracy over time, these results are not accurate enough
to make confident decisions.

5.3 Sequential Analysis

The sequential relationship of human data is clear. At time t, the location of a persons joints,
and their configuration, is very similar to time t − 1. To determine if this could better predict
future struggles, a similar experiment is performed. To perform this analysis, the recurrent



network is presented with body data in the form of 10 frame increments, every 5 frames. For
example, frames 0–10, 5–15, and so on. The results of this can be seen in Table 1. These
results represent a substantial increase over the independent observation based method. This
is encouraging as it signifies that the system is learning short periods of body language which
predict struggle. Still, these models do not perform well enough to be actionable. This is
most likely due to difficulties training for such a particular dataset. Future work may consider
augmenting this dataset with additional users, of varying experience levels.

5.4 Struggle Threshold Analysis

One problem common to each of these results is the heavy class imbalance among training data.
The threshold was chosen empirically based on apparent distributions in the data, and while
these distributions seemed clear, the threshold selected left just seven instances of struggle.
After dividing these into training and test sets, it becomes very difficult to train and validate
a model. This can have a substantial effect on model training, and while techniques exist
to combat these class imbalances (for instance, weighted penalties), they are not generally
intended to handle cases of single digit positive samples. This section explores some methods
of overcoming these limitations.

First, rather than choosing struggle threshold using standard deviation, instances were chosen
by hand, to include more from the third task, hammering a screw. Since this task is designed
to induce struggle, it makes sense to consider more from this class, as its mean and standard
deviation will be larger on the whole. Put another way, the cutoff considered by the previous
two sections only considered subjects who were struggling at a task which was designed to
cause struggle.

Including the next three highest struggling users, the results are shown in Table 2. These
show a marked improvement in performance of predicting if a student struggles. Notably, the
independent experiments were much more successful, and the recurrent experiment improved
for nearly every time quanta. The best performance achieved an F Score of 0.459, which
indicates that overall this performs nearly as well as a coin flip, and far outperforms random
chance.

Overall the model performance may be best explained by the peculiarities of human subjects.
For example, many students begin a task in a neutral position, regardless of whether they will
struggle with the task or not (increasing the likelihood of a false negative). Some students may
show signs of struggle early but recover and complete the task without ultimately struggling,
quantitatively (increasing the likelihood of a false positive). Even the differences between two
students who both struggle may be clear, as one student begins at second 2, while the other does
not until second 4. This latter instance especially merits further study, as finding similarities
between a new student and a past student can aid in providing customized feedback.

5.5 Unsupervised Approach

One of the interesting aspects of this method is that it allows for exploration of the data in an
unsupervised fashion. Unsupervised learning has the advantage of not requiring hand-coding
of the student performances. To this end, a neural network is used to perform feature extrac-
tion, and the resulting features are used in a clustering method. This method automatically



Individual Recurrent
Precision Recall F Score Precision Recall F Score

Seconds

1 0.085 0.113 0.097 0.294 0.600 0.395
2 0.173 0.130 0.149 0.418 0.509 0.459
3 0.323 0.382 0.350 0.303 0.388 0.340
4 0.355 0.408 0.380 0.368 0.548 0.441
5 0.337 0.361 0.349 0.352 0.434 0.389
6 0.323 0.361 0.341 0.346 0.417 0.378
7 0.346 0.355 0.350 0.373 0.444 0.405

Table 2: Results after relaxing the criteria for struggling students

decomposes the data into clusters, some of which indicate that the student will struggle. The
broad impact of these “struggle” clusters, not only allows for prediction, but also for individual
personalized feedback.

To examine this effect, the data is partitioned into clusters. Next, clusters which only contain
non-struggling data are discarded, and the contents of the remaining clusters are examined.
Of these clusters, after just 1 second, 59.9% of remaining datapoints are associated with a
student who will eventually struggle. This means that given a point which falls into one of
these clusters, there is a 59.9% likelihood that that student will struggle.

Clustering is of particular utility in analyzing students as it gracefully handles many of the
problems associated with educational data mining. For one, students are a diverse group, with
many different tendencies and behaviors, and clustering techniques allow for modeling of a
population as a mixture of sub-populations. The other benefit is their lack of reliance on target
data. As discussed, the evaluation of student performance is variable and prone to subjectivity.
This can prevent a coherent model from developing in a supervised learning context. Since
clustering establishes relationships within the data, this can have utility in other context as
well, such as finding students that are similar to one another. These unsupervised methods
may even be useful in finding similarities between students who appeared not to struggle and
students who did, to create customized feedback.

6 Conclusion

This work has shown the ability of neural networks to process complex data-types such as hu-
man poses. Two network designs were proposed, one viewing samples as independent points
in time and the other considering short sequences of pose information. This found that se-
quential modeling was more accurate than the modeling using an independence assumption.
By relaxing strict assumptions about the definition of struggling, the results showed a marked
improvement, yielding an F Score of 0.459. An unsupervised method yielded a model which
could predict if a student would struggle with nearly a 60% accuracy after just 1 second.

There are many avenues for future work extending this study. Decomposing the human data
into small windows proved successful in predicting future failure; however, this made a strong
assumption which may hinder the overall performance of the model. Rather than assuming
that the user was “doomed” to struggle from the start, it would be very helpful to examine the



data to determine if there was a point at which the student began to struggle. Making such
a determination would enhance the results by reducing the amount of noise, since the data
currently suffers from noise due to encoding that the subject would eventually struggle even if
the subject was not struggling yet. While the recurrent network can be somewhat more robust
to these issues, further work may investigate if an automatic approach to finding such a “tipping
point” were possible. Finally, a larger sampling combined with an unsupervised method may
be able to deduce larger trends not just in body language but in determining new methods of
student assessment.
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