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Go With Your Gut! – Using Low-Time-Investment Evaluations of 
Student Work for Identifying High versus Low Quality Responses  

 
Abstract 
 
Background 
Peer review can be a beneficial pedagogical tool for providing students both feedback and varied 
perspectives on their work.  Despite being a valuable tool, the best mechanism for assigning 
reviewers to reviewees is still often blind random assignment.  While better mechanisms must 
exist, they necessarily rely on having some prior knowledge about the work being reviewed. 
 
Purpose (Hypothesis) 
The purpose of this paper is to present the findings from an effort to classify student team 
performance on Model-Eliciting Activities (MEAs) using a trained reviewer’s gut instinct about 
the quality of the work. 
 
Design/Method 
MEAs are realistic, open-ended, client-driven engineering problems where teams of students 
produce a written document describing the steps of how to solve the problem. Using an archival 
data set, nearly 450 MEA solutions were evaluated by two trained student researchers in 
approximately two minutes per solution. Their evaluations are compared against other, more 
detailed, analyses of the solutions to identify if their evaluations are sufficiently accurate enough 
to use as baseline data for making peer review matching decisions with a comparatively 
miniscule investment in time. 
 
Results 
Results indicate that both researchers performed less accurately than computer-based 
classification but were largely consistent with the more detailed evaluations conducted by 
teaching assistants. 
 
Conclusion 
The conclusion this research made was that gut reaction based classification was not wholly 
sufficient to address the needs for informed peer review matching. The results may be useful as 
an additional data source for computer-based classification to reduce the amount of training or to 
increase accuracy. 
 
Introduction 
 
Peer review is a cornerstone of the modern scientific process. It is meant to act as a gateway, 
allowing good research through while filtering out junk science; to separate the wheat from the 
proverbial chaff.  Yet many scientists, academics, and even the US Supreme Court agree that 
peer review, while essential to the scientific process, is far from a perfect system.  In the 1993 
Supreme Court case “Daubert v. Merrell Dow Pharmaceuticals”, Justice Blackmun wrote that it 
was the opinion of the court that “Publication (which is but one element of peer review) is not a 
sine qua non of admissibility; it does not necessarily correlate with reliability… But submission 
to the scrutiny of the scientific community is a component of "good science," in part because it 



increases the likelihood that substantive flaws in methodology will be detected” (Blackmun, 
1993). Effectively, the court recognized that, while peer review is good for science as a whole, it 
does not necessarily work correctly all the time.  The problem with peer review is that it is a 
theoretically sound process that can easily fail apart on implementation. It is a methodology 
whose success is heavily dependent on having the most appropriate reviewer for the situation 
providing the right review. 
 
When used in the classroom, peer review can be a useful tool for providing students with 
additional feedback and perspectives while not significantly increasing the workload of graders 
or course administrators.  Much like its research counterpart, classroom peer review suffers from 
issues related to proper reviewer selection.  Ballantyne, Hughes, and Mylonas (2002) noted 
multiple studies describing how students do not necessarily believe that they or their peers are 
capable reviewers.  In their study, 40% of the participants agreed that their peers could not fairly 
assess their work. Fundamentally, this is a case of “one bad apple spoils the bunch.”  When a 
student receives even a single poorly formed peer review, their attitude towards all their received 
reviews can be spoiled.  While this issue can be reduced through significant training and careful 
rubric design, the need for understanding effective reviewer matching is essential for improving 
the long-term effectiveness and implementation of peer review in the classroom. 
 
Prior research by the author (Verleger, 2014; Verleger, Diefes-Dux, Ohland, Besterfield-Sacre, 
& Brophy, 2010; Verleger, Rodgers, & Diefes-Dux, 2016) has highlighted some of the 
complexities of viewing the reviewer-reviewee relationship as a variable that can be adjusted and 
explored to different effects. A key outcome of that research was an understanding that, to make 
effective peer review assignments, the work being reviewed must be at least somewhat 
accurately classifiable prior to peer review based on the amount of help a reviewee needs. This 
paper reports on using trained student evaluators to provide a “gut reaction” evaluation for 
classification purposes.  Their results will be compared against some of the other evaluations 
completed as part of this research. 
 
Background 
 
Peer Review 
Editorial peer review has been a cornerstone component of scientific achievement since the mid-
1950’s (Burnham, 1990).  Despite its tremendous post-war boom to become the de facto standard 
for scientific and technical publications and the largely similar goal of providing feedback to 
improve quality, peer review is still only moderately used as a pedagogical tool within the higher 
education classroom. The single greatest hindrance toward utilizing peer review in the classroom 
is getting students to accept that it is a viable source for feedback and assessment.  Ballantyne et 
al. (2002) undertook a study of 1,654 first- and second-year students spanning three semesters 
studying four different courses. Despite continual efforts based on feedback from students and 
faculty to improve the process, some of the attitudes of the participants towards the process 
remained relatively consistent throughout the entire study.  In a follow-up survey given to all 
1,654 students, 734 gave a response to a question regarding the worst aspect of the peer review 
process. 31% of those the 734 responders (14% of the total) mentioned concerns about the 
competency of either themselves or their peers. 
 



Despite a lack of confidence in the quality of the review, the majority of students report liking 
peer review.  Of the 30 undergraduate computer science students in their study, Moreira and 
Silva (2003) found that 77% of the students indicated that they liked peer review, and another 
13% were neutral towards peer review.  Liu et al. (2001) reported that 64% of participants 
viewed peer review as beneficial and effective for learning. Despite students’ concerns about 
peer review, multiple studies indicate that it improves the quality of the products being submitted 
subsequent to the review. Sitthiworachart and Joy (2003) indicated that 69% of first-year 
undergraduate students in computer science reported that they discovered mistakes in their own 
code while reviewing code written by their peers.  Eighty percent of the students felt that seeing 
other students’ work was helpful for their learning.  Ballantyne et al. (2002) reported that the 
majority of the 939 respondents “agreed that peer assessment was an awareness-raising exercise 
because it made them consider their own work more closely, highlighted what they needed to 
know in the subject, helped them make a realistic assessment of their own abilities, and provided 
them with skills that would be valuable in the future.” 
 
In addition to the immediate skills provided by participating in peer review, many researchers 
recognize the long-term benefits provided to reviewers.  Boud (2000) posited that the focus of 
assessment as a whole must be rethought to promote lifelong learning skills.  Learning to 
perform and to respond to formative feedback given by both peer- and self-review are essential 
skills for succeeding in a continuous working world that doesn’t assign an end-of-project grade.  
Teaching students how to perform peer review and how to utilize constructive criticism for 
improvement is essential for their future.  Yet despite the long-term benefits recognized by 
academia, students are largely unfamiliar with peer review.  Sitthiworachart and Joy (2004) 
reported that of their 215 first-year students taking a computer programming course, 89% of 
them had not ever experienced peer review prior to the start of the course.  Guilford (2001) found 
that only 39% of undergraduate engineering students understood peer review as it related to 
scientific publishing.  Ballantyne et al. (2002) indicated that only 10% of all the students studied 
recognized the value of peer review towards their future employment, though 35% of the 
education students in their study recognized the long-term value. 
 
Despite the value of peer review, the best approach that has been used for matching reviewers to 
reviewees is random assignment.  Because it requires no prior knowledge of either the reviewer 
or reviewee, it is the easiest methodology to implement. To make more informed choices, some 
amount of quality prediction must be done to identify who needs the most help. Verleger (2010) 
used teaching assistant scores on an early draft as an indicator. Another approach Verleger 
attempted was to use natural language processing to computationally predict quality (2014).  
Both approaches demonstrated flaws that this work attempted to explore. 
 
Model-Eliciting Activities (MEAs) 
This research is being explored in the context of Model-Eliciting Activities.  Model-Eliciting 
Activities (MEA) are realistic, client-driven, open-ended problems that are designed to be both 
model-eliciting and thought-revealing (Lesh, Hoover, Hole, Kelly, & Post, 2000). They require 
students to mathematize (e.g., quantify, organize, dimensionalize) information in context. An 
engineering-based MEA requires that students be provided with a realistic problem that a client 
needs solved. The solution of an MEA requires the development of one or more mathematical, 
scientific, or engineering concepts that are unspecified by the problem – students must grapple 



with their existing knowledge to develop a generalizable mathematical model to solve the 
problem. The point is for students to be involved in the creation of the initial ideas underlying the 
concept or system, thus establishing the need and motivation to go through cycles of expressing 
their initial ideas, testing, and refining them. An MEA creates an environment where skills such 
as communication, verbalization, and an ability to work cooperatively and collaboratively are 
valued. Carefully constructed MEAs can begin to prepare students to communicate and work 
effectively in teams; to create, adopt and adapt conceptual tools; to construct, describe, and 
explain complex systems; and cope with complex systems. The attributes of MEAs support the 
development of the abilities and skills required of graduates of accredited engineering programs 
as stated in ABET Criterion 3 a to k (ABET, 2013).  
 
Methodology 

Table 1. MEA Rubric (Numeric Items) 

Dim. Item Label Full Item Wording Points 
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Mathematical 
Model 
Complexity 

The procedure fully addresses the complexity of the problem. 4 
A procedure moderately addresses the complexity of the problem or 
contains embedded errors. 3 

A procedure somewhat addresses the complexity of the problem or 
contains embedded errors. 2 

Does not achieve the above level. 1 

Data Usage The procedure takes into account all types of data provided to generate 
results OR justifies not using some of the data types provided. 

True 4 
False 3 

Rationales The procedure is supported with rationales for critical steps in the 
procedure. 

True 4 
False 3 

R
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Re-Usability/ 
Modifiability 

The procedure not only works for the data provided but is clearly re-usable 
and modifiable. Re-usability and modifiability are made clear by well 
articulated steps and clearly discussed assumptions about the situation and 
the types of data to which the procedure can be applied. 

4 

The procedure works for the data provided and might be re-usable and 
modifiable, but it is unclear whether the procedure is re-usable and 
modifiable because assumptions about the situation and/or the types of 
data that the procedure can be applied to are not clear or not provided. 

3 

Does not achieve the above level. 2 
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 Results Results from applying the procedure to the data provided are presented in 
the form requested. 

True 4 
False 1 

Audience 
Readability 

The procedure is easy for the client to understand and replicate. All steps 
in the procedure are clearly and completely articulated. 4 

The procedure is relatively easy for the client to understand and replicate. 
One or more of the following are needed to improve the procedure: (1) two 
or more steps must be written more clearly and/or (2) additional 
description, example calculations using the data provided, or intermediate 
results from the data provided are needed to clarify the steps. 

3 

Does not achieve the above level. 2 
Extraneous 
Information There is no extraneous information in the response. True 4 

False 3 
 
MEA Description 
The MEA used in this research is referred to as the Paper Airplane MEA.  Complete details 
about the problem can be found in Wood, Hjalmarson, & Williams (2008). In broad terms, the 
MEA has teams of students using data from multiple throws in a paper airplane contest to 



develop a procedure to help judges award four prizes in the contest; Most Accurate, Best Floater, 
Best Boomerang, and Best Overall. 
 
MEA Evaluation Rubric 
A complete description of the MEA Rubric can be found in Diefes-Dux, Zawojewski, & 
Hjalmarson (2010).  The rubric consists of 7 numeric items and 9 free-response text items. The 
numeric items are shown in Table 1.  Five of the free-response items are targeted questions 
designed to help the reviewer identify specific attributes of high quality solutions present in the 
solution being reviewed, while the other four items ask the reviewer to provide feedback on how 
to improve specific attributes of solution. 
 
Data 
The MEAs being classified in this research were initially collected in 2008 at a large, mid-west, 
public, R1 institution. 147 teams of 3-4 students each completed three solution iterations of the 
Paper Airplane MEA. An initial draft was submitted and given feedback from a trained teaching 
assistant.  This draft was revised and submitted for peer review by 3-4 randomly selected peers.  
This feedback was then incorporated into a third iteration that was then evaluated by the same 
teaching assistant as iteration 1 and was assigned a final grade. Detailed in Table 2, in addition to 
the TA and peer evaluations, there have been 5 other evaluations of portions of the dataset.  The 
most detailed analysis was conducted by the author as part of his dissertation research (Verleger, 
2009) and is, for the purposes of this research, assumed to be representative of the true score. 
 
 

Table 2. MEA Evaluations 

Year Evaluator # Teams 
Evaluated 

Iterations 
Evaluated 

Approx. 
Time/Eval 

Rubric 
Style 

2008 Teaching Assistant* 
147 

1 & 3 30 mins Numeric 
& Free 
Response 

2008 Peers 2 
2009 Expert 1, 2, & 3 60 mins 
2014 Algorithmic Assignment 53 1 N/A** 

Numeric 
Only 

2015 Expert 
2 mins 2016 Student Researcher 1 147 1, 2, & 3 2016 Student Researcher 2 

* 15 Teaching Assistants, each with 7-8 or 14-15 teams, depending on the number of sections being evaluated. 
**Algorithmic Assignment required multiple hours to generate assignment trees from training data but nearly 
instant time to apply trees to selected samples.  Details of process can be found in Verleger (2014). 
 
For this study, the expert and two trained researcher assistants each evaluated MEAs with the 
express purpose of evaluating them using a “gut reaction” in 2 minutes or fewer. The expert 
relied upon his extensive experience evaluating and researching MEAs, while the research 
assistants were training using the same protocol (described below) as the Teaching Assistants, 
but with the explicit instructions that they were going to be going the gut reaction evaluation and 
they should be trying to develop a mental evaluation heuristic. 
 
Training Protocol 
The training protocol for teaching assistants and the student researchers consisted of three stages. 



 
Stage 1) General instruction about MEAs and developing a good MEA solution.  This consisted 
of a passive lecture-style information session designed to set a larger context for MEAs. 
 
Stage 2) Development of a personal solution to the MEA. Participants developed their own 
solution to the MEA.  For the research assistants, they were asked to iterate on their solution 
until the author found their solutions to be of sufficiently high quality.  This iteration process was 
not done for the teaching assistants, as it was deemed too time intensive. 
 
Stage 3) Full evaluation of 5 samples with comparison to an expert evaluator. Participants were 
presented with 5 sample MEA solutions and asked to complete a full evaluation of the work 
using both the numeric and free response items. After each evaluation, they are shown their 
review next to an expert’s review of that same sample and asked to reflect on how they might 
improve their evaluation to more closely align with the expert. 
 
For peer review, the peers went through a similar, but much shorter training process to the 
teaching assistants, with Stage 3 being reduced to only a single training evaluation and 
comparison to expert. 
 
Results 
 
For each of the 7 rubric items shown in Table 1, the 6 non-expert evaluations completed between 
2008 and 2016 were compared against the expert scores. Peer evaluation scores are a rounded 
average of the scores assigned by the individual students that provided the peer review. The 
results are shown in Figures 2-8, with the legend for each graph shown in Figure 1.  In Figures 2-
8, each bar is the same overall length and represents 100% of the responses that evaluator made 
for that rubric item. Values less than 2% are shown, but do not have a text label indicating their 
percentage to reduce clutter. Bars are centered around the “Matched Expert” section, with more 
generous markings to the right and less generous markings to the left. 

 
 

Figure 1. Legend for Figures 2-8. 

 

 
Figure 2. Mathematical Model Complexity 

 



 
Figure 3. Data Usage 

 
 
 

 
Figure 4. Rationales 

 
 
 

 
Figure 5. Re-usability/Modifiability 

 



 
Figure 6. Results 

 
 
 

 
Figure 7. Audience Readability 

 
 
 

 
Figure 8. Extraneous Information 

 
 
 

 



Analysis 
 
The data highlights several interesting points.  First and foremost, the two reviewers did not 
produce evaluations that can accurately classify which teams need help. While they only 
represent two evaluators and broader statistical inference cannot meaningfully be extrapolated to 
all potential evaluators, they do represent “typical” teaching assistants. Their inaccurate 
assessment highlights that the current training regimen is not sufficient for them to consistently 
produce accurate results. In fact, the expert’s gut reaction evaluation was only marginally better.   
 
A few specific notes of interest are: 

• The expert’s gut reaction for Results is the least accurate for that item.  In training, the 
focus of the results item is that a high-quality solution includes both the ranking of teams 
in the contest as well as the numeric scores that led to that rating. Students often struggle 
to provide all the numeric values necessary for the ratings. The lower alignment of the 
expert’s gut reaction scores are likely because the expert’s heuristic for quick evaluation 
was largely based on the presence of any numeric results and did not validate that each of 
the appropriate sets of numbers were present. 

• Audience Readability was difficult for the reviewers to assess quickly. A large portion of 
the readability is based on sentence structure, grammar, and clear writing; all attributes 
that are difficult to judge quickly. This is further exemplified by the fact that neither of 
the reviewers are native English speakers. 

• For nearly all the evaluations, the computer algorithmic approach was still superior to 
human evaluation.  The underlying problem with computer evaluation was the need for 
detailed training data. 

 
Conclusions and Next Steps 
 
While the results are not surprising, they do demonstrate why random assignment is so popular 
in peer review. Attempts to find a meaningful, resource conscious approach to quickly 
classifying student work for peer review have found the problem to be much larger in scope than 
originally anticipated. The onset of reviewer fatigue may have caused some issues in reviewer 
accuracy. While reviews were targeted to 2 minutes each, both reviewers still had decreased 
accuracy over time, one markedly so. Even in restricting the analysis to earlier evaluations, the 
accuracy was still not acceptable. 
 
The next step for this research is to explore alternative and hybrid approaches.  For example, 
future work could identify if the computer algorithm would require less training or see improved 
accuracy if both researchers gut reaction evaluations were included to potentially guide scores. 
For instance, 23% of the time, both researchers agreed with the expert score.  60% of the time, at 
least 1 of the researchers agreed with the expert score. 5.6% of the time, both researcher’s marks 
agreed with the expert score where the computer algorithm did not.  Using this data, the 
algorithm may be better able to discern the true score. 
 
While these results are not encouraging for MEA evaluators, the primary recommendation for 
other researchers seeking to utilize these methods is to focus on improving the training process, 
as this is a lynchpin need to improving the evaluation process. 
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