Asee peer logo

Board 304: Improving Engineering Mechanics Self-efficacy by Focusing on Abstracting the Physical World as a Precursor to Analysis

Download Paper |

Conference

2024 ASEE Annual Conference & Exposition

Location

Portland, Oregon

Publication Date

June 23, 2024

Start Date

June 23, 2024

End Date

July 12, 2024

Conference Session

NSF Grantees Poster Session

Tagged Topic

NSF Grantees Poster Session

Permanent URL

https://strategy.asee.org/46882

Request a correction

Paper Authors

biography

Nigel Berkeley Kaye Clemson University Orcid 16x16 orcid.org/0000-0001-7190-7791

visit author page

Professor of Civil Engineering

visit author page

biography

Lisa Benson Clemson University Orcid 16x16 orcid.org/0000-0001-5517-2289

visit author page

Lisa Benson is a Professor of Engineering and Science Education at Clemson University, and the past editor of the Journal of Engineering Education. Her research focuses on the interactions between student motivation and their learning experiences. Her projects include studies of student perceptions, beliefs and attitudes towards becoming engineers and scientists, and their development of problem-solving skills, self-regulated learning practices, and epistemic beliefs. Other projects in the Benson group involve students’ navigational capital, and researchers’ schema development through the peer review process. Dr. Benson is an American Society for Engineering Education (ASEE) Fellow, and a member of the European Society for Engineering Education (SEFI), American Educational Research Association (AERA) and Tau Beta Pi. She earned a B.S. in Bioengineering (1978) from the University of Vermont, and M.S. (1986) and Ph.D. (2002) in Bioengineering from Clemson University.

visit author page

biography

Makayla Headley Clemson University Orcid 16x16 orcid.org/0009-0003-2941-7854

visit author page

I am a doctoral student in Engineering and Science Education. My research interest include engineering curriculum and accreditation.

visit author page

author page

Komal Rohidas Sonavane

Download Paper |

Abstract

Sophomore level engineering mechanics classes typically have high rates of failure or withdrawal. Some explanations posited for this phenomenon include lack of student preparation, the difficulty of the material, ineffective instructional methods, and lack of context. Instructors and textbook authors attempt to overcome these issues with a range of pedagogical approaches such as math reviews, worked examples focused on problem solving processes, “real-world” problems, and active learning focused on physical understanding. However, the first step in the problem-solving process, abstracting the problem, is very often missing. At a fundamental level, engineers follow a four-step design process: (1) Describing or abstracting the physical world with diagrams, words, numbers, and equations (2) Analyzing their model (3) Designing something based on that analysis, and (4) Constructing the designed system. Sophomore mechanics classes traditionally focus on step (2) largely bypassing step (1), instead presenting students with drawings, numbers, and text and teaching them to apply appropriate equations.

The goals of this research are (1) to develop a sophomore-level mechanics class that flips the traditional approach by starting with the physical world application and focusing on developing students’ ability to abstract as a pre-cursor to analysis; and (2) to assess if this new approach improves student self-efficacy in basic mechanics. The hypothesis of the proposed research is that, by starting with abstraction, students will build a stronger connection between the physical world and the mechanics modeling. In turn, this will improve student’s perceptions about their ability to solve engineering mechanics problems and their motivation to pursue careers as engineers in the future. The specific research questions we seek to answer are: (1) In what ways does teaching students how to abstract the physical world affect their self-efficacy to solve problems in a basic mechanics class? and (2) In what ways does showing students how to abstract the physical world into tractable engineering science problems affect their future-oriented motivation?

We are employing a mixed methods approach that combines quantitative survey data with observations, interviews, and course artifacts to address our research questions. The first phase of our research will establish baseline survey data from statics classes taught in a traditional lecture style that will be compared in future iterations of the course in which students engage in problem abstraction as the first step in the problem-solving process. Results will be presented on the baseline survey data assessing students’ problem-solving self-efficacy and future oriented motivation. In addition to the baseline survey results, we will present example lesson plans, worksheets, class assessments, and an example physical model to illustrate how abstraction will be used in the classroom. Future directions for this project will also be discussed.

Kaye, N. B., & Benson, L., & Headley, M., & Sonavane, K. R. (2024, June), Board 304: Improving Engineering Mechanics Self-efficacy by Focusing on Abstracting the Physical World as a Precursor to Analysis Paper presented at 2024 ASEE Annual Conference & Exposition, Portland, Oregon. https://strategy.asee.org/46882

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2024 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015