
Paper ID #37976

Board 421: Using a Timeline of Programming Events as a Method for
Understanding the Introductory Students’ Programming Process

Dr. Phyllis Jean Beck, Mississippi State University

Phyllis Beck is a blend of art and science having completed an undergraduate degree in Fine Arts at
MSU and a PH.D in Computer Science where she focused on applying Artificial Intelligence, Natural
language Processing and Machine Learning techniques to the engineering education space. Currently, she
is working as a post-doctoral researcher at Mississippi State University in the Bagley College of Electri-
cal and Computer Engineering. She has worked for companies such the Air Force Research Laboratory
in conjunction with Oak Ridge National Labs and as an R & D Intern for Sandia National Labs con-
ducting Natural Language Processing and AI research and was been inducted into the Bagley College of
Engineering Hall of Fame in 2021.

Dr. Mahnas Jean Mohammadi-Aragh, Mississippi State University

Jean Mohammadi-Aragh is the Director of Diversity Programs and Student Development for the Bagley
College of Engineering and Associate Professor in the Department of Electrical and Computer Engineer-
ing at Mississippi State University. Through her interdependent roles in research, teaching, and service,
Jean is actively breaking down academic and social barriers to foster an environment where diverse and
creative people are successful in the pursuit of engineering and computing degrees. Jean’s efforts have
been recognized with numerous awards including the National Science Foundation Faculty Early Career
Development award, the American Society for Engineering Education John A. Curtis Lecturer award, and
the Bagley College of Engineering Service award. Jean earned her B.S. and M.S. in computer engineering
from Mississippi State University, and her Ph.D. in engineering education from Virginia Tech.

©American Society for Engineering Education, 2023

	

Using a Timeline of Programming Events as a Method for Understanding the
Introductory Students’ Programming Process

Abstract
 Due to the difficulty in assessing programming skills that arise from the open-ended
nature of programming, in 2017, researchers conducted a major literature review on IDE-based
learning analytics. The results of this review led researchers to put forth a call to action to expand
the ability of IDEs to collect and analyze different types of data. Through the development of
Instrumented IDEs, we can acquire complex programming process data, however, this approach
is hindered by the complexity of developing and deploying an API for multiple IDEs. This
complexity and the cross-compatibility of APIs is the primary limitation in conducting cross-IDE
research, followed by the inconsistent structure and collection of data and a lack of variety in the
types of metrics used to instrument IDEs.

 In response to the call to action, we developed a web-based IDE known as the
Archimedes Platform for capturing flowcharts and a persistent trace of student programming and
design data. Using this application, we conducted an investigation of intermediate students’
programming process patterns using the Python programming language. Student programming
event data was collected based on a custom event compression system for capturing events such
as CREATE, UPDATE, DELETE, RUN_SUCCESS, RUN_FAIL, and various browser-based
events for detecting external behavior, such as copying and pasting from external sources. Using
this data, we seek to validate an additional IDE-based metric called the Timeline of Program
Development. We define this as a sequence of events for categorize programming skills by
looking at students’ programming behavior and actions taken over time. A timeline of events
records events such as time spent designing, writing, updating, running, or deleting code. This
poster illustrates the programming process patterns captured and analyzed through the
Archimedes platform. It is our hope that this data will be used as a method to better understand
student’s programming behavior.

1. Introduction

This poster presents research that seeks to address a call-to-action for better methods for
capturing students’ programming process data by expanding the type and variety of data
collected, and making an effort to create a platform with an accessible unified infrastructure that
uses a standardized data schema. The primary motivation for this research an overarching goal of
developing a model of programming skill estimation for introductory programming that is rooted
in appropriate learning theories and utilizes artificial intelligence (AI) and IDE-based learning
analytics to automate the collection and analysis of the student programming process. By
improving the types of data we can collect and assess, we can provide better feedback to students
and instructors on one’s current level of programming skill and capacity to design programming
solutions. The currently proposed model of programming skill estimation consists of five
dimensions, thinking processes (TP), organizational strategy (OS), design cohesion (DC), the
timeline of program development (TD), and skill mastery (SM) [Beck 2020]. The primary

	

purpose of these five components is to facilitate the development of six metacognitive strategies:
metacognitive scaffolding, reflective prompts, self-assessment, self-questioning, self-directed
learning, and graphic organizers [Rum 2017]. This poster focuses on presenting the event
compression system used to capture programming events within a web-based IDE and generate
the timeline of program development.

2. Methods

 To address the development of a timeline of programming events we developed an event
compression system that generates meaningful programming events that operate across multiple
levels of data collection granularity as given by [Ihantola 2015]. The event system captures four
levels of granularity: key-stroke level data, line-level edits, execution and submissions data. File
saving is automatic, and compilation is not considered at this time as the programming exercises
are completed in Python.

2.1 Timeline of Events

As a student develops a program solution for a given exercise, a timeline of events is
generated that captures the event type, the current state of the code editor, the start and end time
of the event sequence, the current line number and the value of the line associated with the event.
Using this data we can from a Timeline of Program Development that we define as a sequence of
events used to categorize programming skill by capturing a sequence of students’ programming
events taken over time. A timeline of events is used to record events such as: create, update,
delete, copy, paste, run_success and run_fail [Beck 2020].

The event system takes low-level keystroke events such as insert, remove, carriage returns
and cursor changes along with code execution events, and window focus events into account to
create a set of compressed events as seen in Table 1. A single keystroke event captures the time it
occurs, the event type (etype), the value of the line at the time the event occurred, and the current
line number (linenum). These events are compressed into the higher-level events as defined in
Table 1 and stored in a global events data structure when certain criteria are met to transition to a
new event state such as running the code to create a run_success or run_fail event or when a
cursor change is detected for create and update events.

While some events vary in the data they capture, each compressed event is recorded with
event id (eid), a start time (stime), and the current state of the code editor (state). Figure 1 gives
an example of a CREATE event. Figure 2 gives an example of an UPDATE event. Figure 3
shows an example of a RUN_SUCCESS event. Figure 4 shows an example of a RUN_FAIL
event. As events are captured, compressed, and stored in the global events data structure, the
sequence of events forms a time series dataset that can be structured as a timeline of
programming events.

To briefly demonstrate the intended sequence of events, we can examine a simple sequence
as a case study, to understand what the intended sequence of compressed events should. This
example shows the editing of a simple error where the user creates and runs the code
successfully, intentionally introduces an error, runs the code unsuccessfully, corrects the code,

	

Event Name Event Description

CREATE When a user first completes the creation of a new line.

UPDATE When a user updates a previously created line.

DELETE When a user fully deletes a line.

COPY A user copies one or multiple lines.

PASTE A user pastes code or comments into the editor, without doing a copy directly prior to
the paste, such as copy code from another source into the editor.

COPY-PASTE A user directly copies and pastes in the the editor with out registering any additional
events in-between.

RUN_SUCCESS The user runs the python code and no exception occurs.

RUN_FAIL The user runs the python code and an exception occurs.

ENTER_FOCUS The user’s active window returns to the code editor.

EXIT_FOCUS The user’s focus leaves the code editor and is no longer the active window.

Table 1: List of Editor Events and their descriptions

Figure 1: Compressed CREATE event example

Figure 2: Compressed UPDATE event example

	

and then runs successfully again. Sequences like this are simple but critical for evaluating the
consistency of the outcome of the compressed event sequence generated by the state machine.
Figure 5 shows the final code, Table 2 shows the step-by-step procedure, and Figure 6 shows the
resulting compressed events data structure.

Figure 5: Final Code for Events Data Sequence Example: Correcting a simple error.

Figure 3: Compressed RUN_SUCCESS Event example

Figure 4: Compressed RUN_FAIL Event example

Action Expected Event Output

type: name = "Beck"

press: ENTER CREATE

type: print(name)

press: ENTER CREATE

press: RUN RUN_SUCCESS Beck

Edit: print(nam) UPDATE

Press: RUN RUN_FAIL NameError

edit: print(name) UPDATE

press: RUN RUN_SUCCESS Beck

Table 2: User Procedure for Correcting a Simple Error Sequence

	

 This procedure generated two lines of code and seven events: two CREATE, two UPDATE,
two RUN_SUCCESS, and one RUN_FAIL event. We can see that each event contains a snapshot
of the code editor state (state) at that time. In addition to the event id, event type, and state, the
CREATE and UPDATE events contain a start time (stime) and end time (etime) to capture the
start and end of insert and remove events that are generated by the code editor. In the compressed

Figure 6: Sequence of events generated for Correcting a Simple Error.

	

event, the frequency of those events is stored in the (efreq) property. Additionally, the value of
the line that was either created or modified is stored in the value property along with its
associated line number at that time. When the user runs the code there is only a single time stamp
collected (stime). If there is any output to the console from the code execution it is captured in
the output property, including errors when the run is unsuccessful. With this data, we can
determine which programming process events occurred and when and use it to reconstruct a
timeline to better understand programming behaviors and the path a user takes to arrive at a
solution.

To further illustrate the sequence of compressed events in a student programming context this
poster presents, as a case study, a timeline of events generated by a sample of participants for
two introductory programming tasks: commission rate and alternating cipher.

