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Introduction 

Motivation and Background of the Study 

(This is a Methods Paper.) Scale development and validation play an essential role in research. 

When developing a new instrument, the literature recommends that researchers start by generating a 

sizeable initial item pool, guided by theory, literature, and content experts, and proceed with further 

evaluation and item elimination. Through a series of analyses, including item analysis, exploratory factor 

analysis (EFA), and confirmatory factor analysis (CFA), researchers assess dimensionality (i.e., factor 

structure), reduce the number of items, and then confirm the item and dimension stability in a new sample 

(Boateng et al., 2018). When items consistently load onto the specified dimension in a new sample (i.e., 

item stability), this provides evidence of an instrument’s construct validity (Bowman & Goodboy, 2020).  

In addition to the EFA and CFA procedures, literature suggested different item analyses, including 

Cronbach’s alpha, item-fit (Cantó‑Cerdán et al., 2021; Erhart et al., 2009), item mean, item-total 

correlation (Boateng et al., 2018), item information, item location, and item discrimination (Jin et al., 

2018), to guide the item evaluation and reduction process. While these indices provide helpful 

information about item quality, less is known about how they are related to item stability (i.e., an item 

consistently loading onto the specified dimension in new samples). In practice, when items do not 

consistently load onto the specified dimension in a new sample, it is challenging for researchers to tease 

out whether such inconsistency is due to the item characteristics or sample characteristics (i.e., the 

difference between exploratory and cross-validation samples). In this study, we aim to provide some 

insights into what item characteristics are related to item stability through the newly developed 

exploratory graph analysis (EGA; Golino & Epskamp, 2017) and bootstrap exploratory graph analysis 

(bootEGA; Christensen & Golino, 2021a), which provides a way to isolate the potential confounding of 

sample differences. Specifically, using an engineering interest measure as an example, we explored the 



relationship between item stability and the following item characteristics: 1) network loading, 2) item 

redundancy, 3) item mean, 4) item-total correlation, 5) item discrimination, and 6) item location. These 

indices were selected as they measure different aspects of item quality from different measurement 

frameworks, including network psychometrics, Classical Test Theory (CTT), and Item Response Theory 

(IRT). We explained each in more detail in the following section. In this current study, we focused on 

addressing the following research questions: 

• RQ1: What is the relationship between item stability and the item quality indices (i.e., network 

loading, item redundancy, item mean, item-total correlation, item discrimination, and item 

location)? 

• RQ2: Do stable and unstable items differ in the average value of the item quality indices? 

• RQ3: How well do the item quality indices perform when classifying stable and unstable items? 

Brief background on Network Psychometrics 

Exploratory graph analysis (EGA; Golino & Epskamp, 2017; Golino et al., 2020) is a recently 

developed approach based on graph theory and psychometrics to estimate the number of dimensions 

underlying the multivariate data using network models. The EGA technique starts by estimating a 

network using the Gaussian graphical model (Epskamp et al., 2018), which captures partial correlations 

between items and uses the graphical least absolute shrinkage and selection operator (graphical LASSO, 

Friedman et al., 2008) to optimize the structure of the network. Next, the Walktrap algorithm is used to 

identify the number of dimensions through a sequence of partitions into communities while searching for 

the best organization of nodes that maximizes the modularity index (Pons & Latapy, 2006). While EGA 

can accurately identify the clusters of items, the generalizability and replicability of the results can be an 

issue due to sampling variability. Thus, the bootstrap EGA (bootEGA; Christensen & Golino, 2021a) 

approach was developed to evaluate the structural stability concerning dimensions and items across 

multiple generated samples. The bootEGA can provide information on the reproducibility and 

generalizability of the dimension analysis results derived from the EGA. The item stability measure is one 

key descriptive statistic that can be provided through EGA and bootEGA. 



Item Stability. Item stability describes how often an item is placed in the same dimension, as 

identified by the empirical data, across multiple samples (Christensen & Golino, 2021a). Specifically, the 

bootEGA can generate multiple random samples based on the empirical correlation matrix from the 

observed data, which provides multiple samples that are consistent in the sample size and the underlying 

relationship between items. Thus, this item stability measure can tell researchers how often an item would 

load onto the specified dimension across multiple random samples with similar characteristics. This 

provides a great opportunity for exploring what item characteristics from the empirical data are related to 

item stability while isolating the potential confounding of sample differences.  

Brief Background on Item Quality Indices in Network Psychometrics 

Network Loading. Network loading is an important measure to represent node (item) quality in 

the psychometric network literature. Network loadings are formulated as each node’s (item’s) unique 

contribution to the emergence of a dimension. Network loadings provide similar information to factor 

loadings in the latent variable models and can be used for selecting items, testing measurement 

invariance, and computing factor scores (Christensen & Golino, 2021b). The standardized network 

loading values of 0.15, 0.25, and 0.35 represent small, medium, and large effect sizes of the loading 

magnitudes (Christensen & Golino, 2021b). 

Item Redundancy. The concept of item redundancy is broadly defined as two items having large 

uniqueness correlations (Christensen et al., 2023). A measure that describes the extent to which a pair of 

items (nodes) overlap in the network, meaning sharing similar connections (i.e., strength, signs, and 

quantity) is called weighted topological overlap (wTO; Zhang & Horvath, 2005). The higher wTO values 

indicate greater redundancy between a pair of items. When a wTO value is greater than 0.2 for a pair of 

items, these items are suggested to be combined or reduced (Christensen et al., 2023).    

Brief Background on the Engineering Interest Measure (EIM)       

The Engineering Interest Measure (EIM) was recently developed to assess individuals’ interests 

in engineering-related tasks and skills for the adult population in the workplace. Using exploratory graph 

analysis (EGA; Golino & Epskamp, 2017) and bootstrap exploratory graph analysis (bootEGA; 



Christensen & Golino, 2021b), our research team examined the dimensionality of the initial EIM item 

pool (89 items) and further reduced the EIM to 38 items, measuring six latent constructs (Tsai et al., 

2024). During the EGA and bootEGA analysis, we identified a set of 51 items that were unstable across 

random samples. In this current study, we explored what item characteristics are related to the stable and 

unstable items.   

Methods 

Sample 

A total of 476 Latinx engineers completed all 89 items of the Engineering Interests Scale. All 

participants received an engineering undergraduate degree between 2015 and 2022. All were employed as 

engineers in the U.S. Table 1 presents the sample characteristics. The average age of the participants was 

34 years old (range = 23 - 58) when the data were collected. There were 158 (33.2%) women and 313 

(65.8%) men, and five participants identified as genderqueer or non-binary (1%). Most participants 

identified their ethnic origins as Mexican (n= 320, = 67.2%).  

 

Table 1. Demographic Characteristics of the Sample  

Variable Count % 
Age Mean = 34, Range = 23 – 58 
Gender   

Woman 158 33.2 
Man 313 65.8 
Trans man/ Trans woman/ 
Genderqueer/Non-binary 

5 1.0 

Hispanic Origin a   
Colombian 22 4.6 
Cuban 32 6.7 
Guatemalan 13 2.7 
Mexican 320 67.2 
Peruvian 13 2.7 
Puerto Rican 14 2.9 
Salvadorian 14 2.9 
Venezuelan 18 3.8 
Other b 74 15.5 

Race a   
Black/African American 15 3.2 
Indigenous American 17 3.7 
Indigenous Mexican 55 11.9 



Middle Eastern/North African 12 2.6 
White 343 73.9 
Other c 83 17.9 

Undergraduate Engineering Major   
Civil Engineering  86 18.1 
Computer Engineering 77 16.2 
Electrical Engineering 76 16.0 
Mechanical Engineering 121 25.4 
Other 116 24.4 

Work Hours Per Week   
Less than 40 Hours 18 3.8 
40 Hours 239 50.2 
More than 40 Hours 219 46.0 

Note: N = 476. a Participants can select more than one category. The percentage will not add up to 100.     
b Other origins include Argentinian, Belizean, Bolivian, Brazilian, Chilean, Costa Rican, Dominican, 
Ecuadorian, Guyanese, Honduran, Nicaraguan, Surinamese, and not specified. c Other race categories 
include Asian, Hawaiian/Pacific Islander, Indigenous Central American, and not specified.     

 

Item Stability Measure 

 In the current study, we conducted EGA on the initial item pool (89 items) to assess the 

dimensionality of the instrument. Next, we conducted bootEGA with 500 random samples to verify the 

item and structural stability of the dimensionality findings from the EGA. All the analyses were 

conducted using the EGAnet package (Hudson & Alexander, 2023) in R, and the results of the initial 

dimensionality assessment are summarized in Tsai et al. (2024). Based on the booEGA results, the 

“itemStability” function was used to generate the number of times an item is estimated in the same 

dimension, as initially estimated in the EGA step, across random samples. The raw item stability value is 

a continuous variable between 0 (0%) and 1 (100%). A binary item stability index (1 = unstable items 0 = 

stable items) was created based on the criteria that item stability greater than 0.75 represents an adequate 

number of times the item is assigned to the same dimension (Christensen & Golino, 2021a). In this study, 

we first used the raw item stability variable to explore an overall association pattern (RQ1) and the binary 

index to investigate group differences and classification accuracy (RQ2 and RQ3).   

Item Quality Indices 

 Network Loadings. The standardized network loadings were computed from the initial EGA 

results for each item. In the EGAnet package, the “net.loads” function was used to generate the node’s 



strength centrality within each specified dimension, providing a similar interpretation to factor loadings 

(Christensen & Golino, 2021b). From the measurement perspective, items with a stronger network 

loading have a stronger association with the dimension and are expected to be more stable across samples.  

Item Redundancy. The item redundancy measure was computed from the initial EGA results for 

each item (Christensen et al., 2023). In the EGAnet package, the “UVA” function was used to conduct the 

unique variable analysis (UVA), which identified locally dependent (redundant) variables in a 

multivariate dataset and generated the wTO measure for each pair of items (Zhang & Horvath, 2005). 

Because the UVA does not require prior knowledge of the dimensions, the analysis was conducted based 

on all the 89 items in the multivariate dataset. In this study, we computed the mean wTO for each item to 

represent its overall redundancy with other nodes (items) in the network.            

Item Mean and Item-Total Correlation. The item mean and item-total correlation was calculated 

for each item within the specified dimension based on the EGA results. We used the “alpha” function in 

the Psych package to produce these item statistics. In the EIM dataset, a higher item mean indicates that 

participants, on average, endorsed a high level of interest in the specified engineering skill/task. A high 

item-total correlation represents that participants’ response to a specific item is strongly associated with 

their total scores of the specified dimensions.     

IRT Item Parameters. Based on the EGA results, the IRT item discrimination and location 

parameters were estimated for each item within the specified dimension. We used the mirt package to 

conduct a generalized partial credit model (GPCM; Muraki, 1992), an IRT model commonly used for 

modeling polytomous item responses (Dai et al., 2021; De Ayala, 2013). In our study, the item location is 

calculated as the average of the category locations (thresholds). In the EIM dataset, a high item location 

value indicates that an item requires a high level of engineering interest to endorse its categories. A high 

discrimination value indicates that an item can differentiate individuals’ engineering interests well.  

Analysis 

To address our RQ1, we used Pearson correlation to analyze the association between the item 

quality indices and raw item stability value. The item quality indices were treated as continuous variables 



(i.e., network loadings, item redundancy, item means, item-total correlation, IRT item location, and IRT 

item discrimination). We used the raw item stability score in the correlation analysis to explore an overall 

pattern of associations. A correlation value lower than 0.39 is a weak correlation, between 0.40 and 0.69 is 

a moderate correlation, and 0.7 or greater is a strong correlation (Schober et al., 2018).  

To address our RQ2, we conducted independent-sample t-tests to compare mean differences in 

the item quality indices between stable and unstable items. The binary item stability index (1 = unstable 

items, 0 = stable items) was used as the independent variable. The item quality indices (i.e., network 

loadings, item redundancy, item means, item-total correlation, IRT item discrimination, and IRT item 

location) were treated as continuous variables and used as the dependent variables in the test separately. 

Because of the multiple testing, the risk of type-I error was greatly increased. Therefore, we used a more 

stringent alpha level (p < .001) to control for the type-I error inflation (Abdi, 2010).   

To address our RQ3, we conducted separate logistic regression analyses with each item quality 

index as a predictor and the binary item stability index (1 = unstable items 0 = stable items) as the 

outcome in the model. Based on the logistic regression results, we then plotted the classification accuracy 

for each index using the receiver operating characteristic (ROC) curve plot. We examined the area under 

the curve (AUC) to determine the classification accuracy. When an AUC value equals or less than 0.5, 

this means a classifier is not doing better in classifying stable and unstable items than a random guess. 

Generally, AUC values ≥ .7 are considered acceptable, with values ≥ .8 considered excellent and values 

≥ .9 considered outstanding (Mandrekar, 2010).   

Findings 

RQ1: Correlation between Item Stability and Item Quality Indices 

The Pearson correlations of the item stability measure and the item quality indices are presented 

in Table 2. Our results showed that item stability had a positive, moderate correlation with network 

loading (r = 0.53), item-total correlation (r = 0.48), and IRT item discrimination (r = 0.46). Item stability 

had a negligible correlation with item mean and item redundancy. (rs < 0.3).  

 



 

Table 2. Pearson Correlation of the Item Quality Indices  

 Item Quality Indices  Network 
Loading 

Item 
Redundancy 

Item 
Mean 

Item-Total 
Correlation 

IRT Item 
Discrim. 

IRT Item 
Location 

All 89 Items 
Network Loading   1.00      
Item Redundancy  0.22*  1.00     
Item Mean -0.19 -0.18  1.00    
Item-Total Correlation  0.82***  0.18 -0.41***  1.00   
IRT Item Discrim.  0.84***  0.16  0.01  0.77*** 1.00  
IRT Item Difficulty  0.40***  0.20 -0.92***  0.64*** 0.25* 1.00 
Item Stab.  0.53***  0.21 -0.18  0.48*** 0.46***  0.32** 

Note: 476 participants completed all 89 items (38 stable items and 51 unstable items). IRT Item Discrim: 
IRT item discrimination parameter. Item Stab.: raw item stability measure (continuous variable). 

 

RQ2: Mean Differences in Item Quality Indices 

The descriptive statistics of the item quality indices are presented for the stable and unstable 

items (Table 3). Our findings suggested that stable and unstable items differ systematically in all 

characteristics except for item redundancy. Specifically, stable items had significantly higher network 

loadings (t = 4.36, df = 87, p < .001), lower item means (t = -4.03, df = 87, p < .001), higher item-total 

correlations (t = 5.03, df = 87, p < .001), higher IRT item discrimination (t = 3.71, df = 87, p < .001), and 

higher IRT item location (t = 5.27, df = 87, p < .001).  

 

Table 3. Item Quality Indices by Item Stability Status 

Item Quality Indices  
  

Stable Items (38 Items)  Unstable Items (51 Items) 
Mean (Min / Max)  Mean (Min / Max) 

Network Loading  0.22 (0.12 / 0.39) a  0.16 (0.02 / 0.37) a 
Item Redundancy        0.02 (0.01 / 0.07)  0.02 (0.01 / 0.07) 
Item Mean 3.61 (2.88 / 4.10) a  3.91 (3.28/ 4.54) a 
Item-Total Correlation 0.72 (0.54 / 0.84) a  0.62 (0.37 / 0.83) a 
IRT Item Discrim. 1.50 (0.56 / 3.24) a  1.09 (0.38 / 2.37) a 
IRT Item Location -0.74 (-1.42 / 0.22) a  -1.32 (-2.53 /-0.43) a 

Note: N = 476. a Significant differences between the two groups (p < .001), based on t-tests. IRT Item 
Discrim: IRT item discrimination parameter.  



 

RQ3: Performance of Item Quality Indices 

Our results suggested that several of the item quality indices can correctly classify stable and 

unstable items on an acceptable level. Specifically, the network loadings, item mean, item-total 

correlation, and IRT item location had AUC values greater than 0.7 (AUCs = 0.75, 0.72, 0.78, and 0.78, 

respectively). On the other hand, item redundancy (AUC = 0.68) and IRT item discrimination (AUC = 

0.69) are slightly below the cut-off value.  

Significance and Implications  

In this study, we explored the relationship between item stability and item quality indices from 

different measurement frameworks through the newly developed exploratory graph analysis approach. 

Using an engineering interest measure as an example, our findings provide some empirical support for 

how different item quality indices from different measurement frameworks are related and how they are 

related to item stability.  

First, our results showed that item stability had a positive and moderate relationship with network 

loadings, item-total correlation, and IRT item discrimination. This finding is consistent with previous 

literature that suggests that items with high item-dimension association (e.g., factor loading) play a more 

prominent role in the structure of the dimension. Thus, using scale items with high factor loadings to 

guide the item retention process should lead to a consistent conclusion in a different sample (Jin et al., 

2018).  

Second, in examining the descriptive statistics of the stable and unstable items, our findings 

showed that in comparison to unstable items, stable items, on average, were characterized by higher 

network loadings, higher item-total correlation, higher item discrimination as well as higher item 

difficulty (i.e., lower item means and higher IRT item location). Descriptive statistics revealed that for the 

unstable items, there are more items with a mean of four or above (on a 5-point scale) compared to the 

stable items. This may suggest that these engineering interest items are “easy” for many individuals to 

endorse high rating categories (i.e., like and strongly like), which may not provide helpful information to 



differentiate participants’ engineering interest levels. This finding is consistent with the literature that 

items with higher discrimination and greater difficulty can provide more information about a person’s 

ability (Yang & Kao, 2014).  

Our findings provide implications for engineering education researchers who want to develop a 

scale for measuring a latent educational or psychological construct. Particularly, during the scale 

validation process, when researchers observe that their items are not loading to the same specified 

dimension across independent EFA and CFA samples, they may consider using EGA to verify these items’ 

behavior across multiple samples with similar characteristics to the original EFA sample. The item 

stability index from the bootEGA procedure could provide insights into whether the inconsistent latent 

structure observed between the EFA and CFA samples would be due to item or sample characteristics.      

When conducting EGA is not a viable option, researchers may consider using the CTT and IRT item 

quality indices to inform item selection, as these indices can identify unstable items to some extent.  

To conclude, our findings suggested retaining items that strongly connect to the specified 

dimensions and items that are not too easy for individuals to endorse the high rating scale categories (e.g., 

like and strongly like”). Future studies may further explore the relationship between item stability and 

other item characteristics under different data conditions. 
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