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BR: An Interactive Software-Prototype for 3D Layout 

 
 

 

Abstract 

 

As a research project implemented with graduate students from TU_____, BuildingRelations [BR] deals with 

the development of an interactive software prototype to support the design process: BR employs bottom-up 

principles of organization to generate functional layouts exhaustively enabling development of more alterna-

tives than by means of conventional sketching methods mainly because architectural space planning is highly 

combinatorial, and therefore, difficult to conceive exhaustively by human search means.  

 

Content 

 

Focusing on the development of an interactive design tool which allows simulation of complex design proc-

esses, the project proposes an alternative design method based on Swarm Intelligence [SI]. SI is, basically, an 

Artificial Intelligence [AI] method consisting of agents interacting locally with one another and with their en-

vironment similarly to the way fish interact in a swarm and birds in a flock. 

 

In the absence of top-down control dictating how individual agents should behave, local interactions between 

agents lead to the bottom-up emergence of global behavior. The rules according to which agents interact are 

simple: C. Reynolds' flocking simulation, for instance, is based on three rules according to which digital birds 

flock – [1] maintain a minimum distance from neighbors, [2] match velocity with neighbors and [3] move to-

wards the center of the swarm. While these rules are local, establishing the behavior of one agent in relation-

ship to its neighbor, the flock behaves as a whole coherently. 

 

 

 
 

Figure 1: Functional units swarm in the 3D space towards local optimal configurations. Functional units are 

represented in this example as blue boxes; spatial relations between functional units are represented as magenta 

connecting-lines. 

 

Similarly, all functional units/objects pertaining to a building can be seen as flocking agents striving to achieve 

an optimal layout. Spatial relations between functional units can be described as sets of rules, according to 

which all units organize themselves into specific configurations. This approach is particularly suitable for the 

functional layouting of large and complex structures: While the architect might find it difficult to have an over-

view of all functions and their attributed volume and preferential location, the functional units can easily 

swarm towards local optimal configurations. 

 P
age 12.320.2



Attempts to automate the layout process incorporate approaches to spatial allocation by defining the occupi-

able space as an orthogonal grid and using an algorithm to allocate each rectangle of the grid to a particular 

function
2
. However, these approaches limit the design to orthogonal spatial layouts.  

 

Other strategies break down the problem into parts such as topology and geometry: While topology refers to 

logical relationships between layout components, geometry refers to the position and size of each component 

of the layout. A topological decision, for instance, that a functional unit is adjacent to another specific func-

tional unit restricts the geometric coordinates of a functional unit relative to another
3
.  

 

Based on a similar strategy, BR generates orthogonal as well as non-orthogonal spatial layouts for large, com-

plex layouting problems in an interactive design process. Furthermore, it operates in 3D space and therefore 

represents an innovative approach to semi-automated design processes.    

 

Implementation 

 

Implemented in a research project with eight graduate students from TU _____, BR is being continued at the 

time being within the framework of a PhD research.  

 

The one semester long project addressed issues related to concepts and tools development for interactive de-

sign as part of the Interactive Architecture [IA] program. The main focus has been the development of meth-

odologies for architectural computer-based applications, which are implemented in interactive 3D simulations 

and visualizations. Within one semester students developed an understanding for HOW interactive media in-

fluences architectural design through object-oriented and procedural studies and were introduced to Virtools as 

a platform to generate interactively not only designs but also design tools.  

 

 
 

Figure 2: BR-Interface - top view - showing functional units swarming towards local optimal configurations. 

 

Assuming that a design tool is connected to design and design thinking in a fundamental way, students devel-

oped a conceptual framework for the interactive design development of 3D hotel layouts. The tool has been 

divided in sub-tools such as SizeDefiner, FunctionsDistributor, and BoundingBox, which have been developed 

by individual students.  

 

SizeDefiner is a sub-tool which interactively establishes dimensional relationships and constraints for building 

components. It is based on data originating from building regulations: These define rules and restrictions re-

garding minimum floor areas per person - see Dutch Building Regulations 2003.  
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In its first version SizeDefiner receives the input from the building regulations database and the number of 

people occupying the space from the user/designer; SizeDefiner then generates the space and scales it to fit the 

minimum size required by those regulations. A more advanced version incorporates additional functions ena-

bling the user/designer to adjust the number of floors, adjust floor heights and set the width and length of the 

space by overruling regulation constraints when necessary.  

 

The autonomous working of the script requires Artificial Intelligence: Spatial units/building components estab-

lish relationships with other spatial units by determining their distance and automatically adjusting their width, 

length and height in order to prevent overlaps/collisions. Spatial units, therefore, adjust themselves to their 

surroundings. 

 

Functional spaces are linked to other functional spaces creating spatial relations defined and simulated with 

another sub-tool: FunctionsDistributor. 

 

FunctionsDistributor takes, basically, a program of requirements - number of specific spaces, their occupancy 

numbers, building regulation classes, etc - and translates it in an optimally ordered spatial layout. The optimi-

zation is achieved by defining distances between objects of the same type and objects of different type, mean-

ing that objects of the same type cluster while objects of unrelated types disperse. 

 

 
 

Figure 3: BR-Interface shows 20-30 Functional Objects swarming within the BoundingBox for a hotel in Rot-

terdam. 

 

The development of this sub-tool involved several steps pertaining 3D spatial configuration, structure and rep-

resentation: 

 

[1] Organization: Functional objects have configurable distances from each other enabling them to group to-

gether or to spread out. 

 

[2] Representation: Relations between objects are represented as magenta lines when relations are established 

between grouped objects. Green lines indicate nearest object relations. This representation enables reading and 

evaluation of the dynamic spatial diagram. 

 

[3] Structure: Objects are square or spherical and their orientation is in a grid-like or radial structure respec-

tively. This enables development of specific layout designs. 

 

[4] Scripting and databases/arrays: FunctionsDistributor uses three arrays pertaining to the program require-

ments, the building regulations, which define the dimensions of the objects, and the master array, which is a 

dynamic array containing all data about the functional objects.   
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[5] Min-max component number: Several tests have been implemented in order to define a min-max number of 

building components. In the end the maximum number of elements has dropped from 100-150 to 50-100 due 

to increasing complexity of the script.  

 

Developed in Virtools, which is an interactive 3D application, the described software prototype uses a specific 

strategy to determine/recognize nearest objects: It 'memorizes' and therefore 'remembers' objects involved in 

object collisions by storing those objects' 3D data in a database. The acquired data can then be used to adjust 

the width, length and height of the '3D functional objects' automatically in order to prevent collisions with sur-

rounding spaces. 

 

The placement of all functions in 3D space is controlled by the FunctionsDistributor script. The SizeDefiner 

script generates functions depending on their internal values as well as their external placement defined by the 

FunctionsDistributor script or by the user. 

 

This system enables adjustment of spaces to their surrounding spaces, whereas distances to other objects are 

defined by: 

 

[1] The bounding box in which all functional objects are expected to fit – This has been developed as a sub-

tool. 

 

[2] The preferred distance to the nearest functional object, which is defined according to the elastic cord prin-

ciple: the bigger the distance, the harder the object tries to get to the preferred distance.  

 

[3] The preferred distance to the nearest object within the same functional group, which is defined according to 

the elastic cord principle: the bigger the distance, the harder the object tries to get to a preferred distance. 

 

[4] The preferred distance to a ‘center’ and inside/outside boundaries, which enables functional objects to clus-

ter round a common point according to the elastic cord principle.  

 

In order to avoid overlaps, at the moment one object touches another object collision detection enforces that 

they both move for 0.1 second in the opposite vectorial direction.  

 

These self-organization mechanisms are complemented by interactivity: The layouting process does not take 

place exclusively outside the influence of the user/designer. The user can select objects and move them to 

other places; the model then readjusts to the new configuration. By clicking on an object, the user can 'free' the 

object from a specific position enabling it to participate in the simulation all over again. In this interactive 

process, the system and the user/designer search complementarily for an optimum layout of functions. 

 

A third sub-tool, already mentioned, is the BoundingBox, which establishes the boundaries within which func-

tional objects position themselves. It contains real-time editing features which enable form-finding processes 

pertaining to surface definitions such as NURBS and triangulated meshes.  

 

This sub-tool converts the data defining min-max areas, min-max floor heights, etc. into a geometric model by 

creating a shape according to the required square meters. By dragging control points the model is recalculated 

to stay within the pre-determined boundaries, while changing shape. 

 

All data is received and sent continuously from the BR-database to all active sub-tools. The BR-database con-

tains all the information regarding which group functional objects belong to, which objects/groups they may 

relate to, function type, etc. In addition it establishes connectivities between different software and functions as 

a parameter pool containing geometric and global data. For instance, a 3D model developed with the Bound-

ingBox sub-tool could be saved to an online database, from which FunctionsDistributor would take data to 

generate a functional model within the parameters defined by the 3D model. 
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Figure 4: The free-formed BoundingBox establishes boundaries within which functional objects position them-

selves. 

 

Evaluation 

 

Within one-semester students developed - without previous knowledge of the visual programming language 

employed in Virtools - a software prototype for design development and concluded that: 

 

[1] BR generates functional layouts exhaustively and enables the designer to develop and consider more alter-

natives than by means of conventional sketching methods mainly because architectural space-planning is 

highly combinatorial, and therefore, difficult to conceive exhaustively by human search-means. 

 

[2] Instead of one, BR generates multiple designs and enables informed choices by departing from a singular-

design principle, which represents a potentially prejudiced position of the master-designer. BR, therefore, does 

not generate the ultimate design but instead offers alternative designs within the spectrum of a relevant solu-

tions-field. 

 

[3] Used interactively and in combination with other software, in order to achieve non-deterministically an 

optimal design, BR is a design support system, since it supports the designer in the functional layouting proc-

ess rather than prescribes a solution.  

 

This software prototype has been employed, inter alia, for developing functional layouts for a hotel in Rotter-

dam incorporating 20-50 rooms. Its current version, even though diagrammatic, demonstrates an obvious ca-

pability to support functional layouting of large and complex buildings based on swarm principles, on condi-

tion that global optimization mechanisms are incorporated into it - which is the next step in the development of 

this software. 
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The inability of this software prototype to generate a global optimum goes back, in part, to the definition of 

local optima: The software generates endlessly many local optima. It does not, though, generate a global opti-

mum.  The further development of this tool aims, therefore, to incorporate global optimization mechanisms; it 

also aims to address issues related not only to the functional organization of space but also to issues of form 

generation and spatial coherency. 

 

With respect of education, the intertwining of CAD-issues with design thinking has become relevant on the 

level where software is design task related and computer skills are not taught outside design projects. Generic 

CAD-software teaching - as often implemented in architectural education - is similar to teaching material 

properties and assembly principles unrelated to the respective design tasks: Knowing that both influence each 

other in a fundamental way, they have to be taught in a way that this connectivity is emphasized and not disre-

garded.  

 

As a multi-facetted project BR proves that not only intertwining CAD-software teaching with the design studio 

but also the further development of the CAD-software is beneficial for students: On the one hand scripting em-

powers them to develop software prototypes able to implement desired design tasks, on the other hand the me-

chanics of algorithmic definitions forces them to break down design problems into search and solution spaces 

and establish search methodologies in order to find possible solutions. 

 

This implies development and use of not only design knowledge but also knowledge stemming from a domain 

outside architecture, namely, computer science raising the question of the necessity to incorporate applied 

computer science in the architectural curriculum in a similar way structural or material studies have been in-

corporated. The premise is that students have to acquire literacy in computing and algorithmic definitions ap-

plied to architectural tasks: These enable them to develop and appropriate design tools in such a way that these 

tools not only support but also enhance the design process by incorporating machinic intelligence, and there-

fore, compensating where human decision-making might be limited or overextended. 
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