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Challenges in Teaching Ideal Flows to ME Students concurrently with Senior 

Design 

Abstract 

Students in mechanical engineering need to learn important analytical and mathematical 

concepts of computational fluid dynamics (CFD) if they wish to choose a career in fluid 

mechanics. However, these tools are challenging to learn and are not always interesting to most 

students attending group activities in a multidisciplinary senior design class. This paper presents 

implementation details of motivational strategies presented in three earlier papers together with a 

suggested approach to deliver them. The student performance data is from a well-acclaimed, 

ABET accredited, career oriented mechanical engineering curriculum. The paper clearly 

demonstrates both horizontal and vertical integration of engineering mechanics concepts in the 

curriculum beginning with freshman level and ending with the upper level elective classes. 

Mathematics is delivered in a meaningful way enhancing reinforcement and understanding. In 

addition, assessment adjustments are made to encourage increased mathematical rigor and 

practice of logical arguments. Overall the approach improves retention and recall of 

mathematical and physical concepts appropriate for analysis. Discussion of specific examples 

and performance data are presented from course topics of ideal flows in a class of advanced fluid 

mechanics. The paper lists relevant focal concepts and how conceptual links are further enhanced 

using follow-on applications. 

Introduction 

The author conceptualized and managed Engineering Sciences Core Curriculum (ESCC) for 

several years as a part of ABET assessment for continuous learning improvement in Mechanical 

Engineering (ME) at Rochester Institute of Technology (RIT). The faculty participating in ESCC 

collectively designed a seamless learning environment which may be emulated by others. ESCC 

assessment guidelines have been followed for the past 12 years. Details of the assessment may be 

found in references [1 – 3]. An important difference of ESCC from traditional curricula 

elsewhere is our program is student-centered. All difficulties in concepts have been researched 

and presented below from a student’s learning point of view. 

Modern computational focus requires mastery of analytical thoughts to properly understand and 

improve computational models. There are some mathematical bottlenecks in achieving this feat 

which are discussed separately in another paper [4]. The approach requires reinforcing 

mathematical understanding in parallel with engineering applications. Many examples and 

attractive demonstrations are necessary before and during active learning of mathematics. The 

recommended mathematical concepts are reinforceable similar to engineering concepts discussed 

herein. Only when the breadth of engineering concepts is connected well with the depth of the 

mathematical understanding, a true T-shaped curriculum [4] may be claimed.  

We begin with the connectivity of ideal flow topics which were presented for four weeks as a 

part of an upper undergraduate level elective course (Fluids II). Dynamics, which reinforces and 

extends statics thoughts and introduces fluid mechanics (which later leads to ideal flows), serves 

as the focal data source for ESCC. If mastery of concepts is not established in Dynamics, 



thoughts become sketchy and disappear by the time students reach ideal flows. For average 

students to retain these thoughts, gaged reinforcement and incentives are necessary. These are 

discussed below beginning with a suggested focus on force-couple equivalency. We prescribe 

clear and coherent connectivity of dynamics and fluid mechanics thoughts first, followed by 

some performance data to establish successful connectivity. Finally, we present some current 

concerns and recommendations to conclude this paper. 

Pedagogical Notes    

In the first lecture of Dynamics an instructor asks “Can anyone summarize in one sentence what 

you learnt in Statics?” The discussion would open immediately a quick recall of concepts and 

take students back to physics review of Newton’s laws of motion. Students are led to recall many 

concepts in system of units, equilibrium, particles, rigid bodies, deformable media, Hooke’s law 

(if seen before), algebra, calculus and differentiation in a single discussion. The clarity of this 

discussion is very important so that students would start taking notes for the first time. The 

instructor’s presentation skill is also very important. ESCC recommends a discussion based upon 

common understanding so that all instructors in core ME classes (Statics, Mechanics of 

materials, Dynamics, Thermodynamics Fluid Mechanics and Heat Transfer) are able to deliver 

the same material uniformly. If students miss an 8 am class they can attend the 3:30 pm section 

of the same class and learn almost the same thought process, complete with examples. A 

suggested way to present fluid mechanics connected with dynamics and mathematics is 

presented below. 

The equilibrium connection 

In the context of a statics course, equilibrium represents absence of translational and rotational 

motion for rigid bodies. In dynamics, this static equilibrium is violated since rigid bodies will 

undergo both translational and rotational motions in general. Furthermore, how equilibrium is 

perceived is simplified in the superposition of two motions. In Statics students first learn the 

concept of a Free Body Diagram (FBD), which sketches only external forces and/or couples on 

the system of interest. When FBD is constructed in fluid flow systems, not only is the motion 

more generalized to include shear and volume deformations of the system, it introduces two 

distinct viewpoints (e.g., Lagrangian and Eulerian) to analyze those motions. This paper will 

focus only on rigid bodies, except it will indicate generalization of ideas into calculus using the 

continuum and discrete concepts.  

Alternate methods such as the D’Alembert’s technique [5], wherein all equilibrium questions are 

changed to the sum of forces equal to zero, is a popular idea practiced by many professors to 

deliver upper level ME courses. Such equilibrium is called a dynamic equilibrium in principle of 

virtual work. But a struggling novice may find the concept difficult to understand why and how 

to use the reversal of inertia forces in equilibrium equations. Instead, we propose that both static 

and dynamic equilibrium should be taught clearly by a cause and effect logic presented in the 

Newton’s first and second laws of motion. If there is an unbalanced external force or couple 

resulting from the sum of forces and moments, it will initiate a translational and/or rotational 

acceleration on a rigid body about a certain point. 



The action-reaction principle (Newton’s 3rd law) is not necessary at early stages of delivery in 

Statics. It will be introduced when the course reaches trusses, followed by frames and machines. 

Our experience shows that D’Alembert’s principle is the single most stumbling block in the 

correct learning of FBD’s. Students who are unable to successfully isolate the selected system 

from its surroundings suffer the most. If a simple truss member is in equilibrium, are there two 

or, one external force on it? Overcoming doubts such as this, and understanding support 

reactions must be top priority in learning Statics. Proper system isolation must be emphasized 

when students sketch complex FBD’s of interconnected systems such as trusses, or, frames and 

machines. A novice must learn to verify cancellation of all internal forces to create an overall (or, 

external) FBD from all component FBD’s. This is similar to internal flux cancellations in CFD 

which would later be learnt in Fundamentals of Computational Fluid Mechanics. 

In Statics, average students have enough trouble learning the difference between external and 

internal forces, and how to choose and analyze a system using algebraic equations. Body and 

surface forces are taught for the first time. More discussion is necessary to understand why the 

body force caused by gravity is an external force and why inertia forces are not external forces. If 

possible, an instructor should design suitable experiments (in our program this task is managed 

by three experiential learning courses) to present the distinction between surface and body 

forces. Although this helps students develop a feel about surface forces, body forces are not 

clearly understood as external forces by majority of students without their first taste of 

conceptual idealizations. More abstract ideas will be offered later to students during coverage of 

center of gravity (CG), center of mass, centroid and moments of inertia in Statics. 

In recent years, widely followed dynamics textbooks [6, 7] have introduced the concept of a 

Kinetic Diagram (KD) which distinguishes the external from inertia forces. It reminds a student 

how to identify external inertia forces and couples and place them at the center of gravity in the 

same way a body force is presented on the FBD. Instructors may also reinforce force-couple 

equivalency concepts to calculate forces and moments on submerged objects and buoyancy in 

fluid statics. Like CG, the net buoyancy force is represented at the metacenter (the center of 

buoyancy). A preview of these later topics in Statics may excite a keen novice to seek more 

confirmations elsewhere on the Internet [8, 9].  

Another connectivity example could be made by demonstrating experiments of hydrodynamic 

and aerodynamic stability. An instructor may ask students if they knew why the engine 

compartment of a ship is located at the bottom of the ship, then demonstrate how the location of 

the CG below the metacenter creates a corrective couple when the model ship’s equilibrium is 

perturbed. Universities where aerodynamics is taught, an instructor may also demonstrate that 

negative slope of the pitching moment vs angle of attack curve creates the static stability. These 

are some suitable examples of reinforcing the concept of force-couple equivalency.  

Rotational Equilibrium 

Since particles do not have measurable size, they can possess only a translational motion. A 

curvilinear motion of a particle is quite different from the curvilinear motion of a rigid body 

when it rotates during its motion. Chasle’s theorem [10] (which is typically introduced in 



Dynamics) may be previewed during Statics by decomposing a general motion of a rigid body 

into a translation, plus a fixed axis rotation about the CG. Furthermore, contrasting examples of 

placing objects on turntables vs. roller-coasters and Ferris wheel rides, plus previews of fluid 

rotation experiments [11] would excite more independent learning of such topics. More hands-on 

experimentation will induce easier conceptual learning, and (if steps are carefully executed) may 

excite students to learn analytical formulations on their own.  

Since a couple cannot cause a net force but a net force can cause a moment about a point, it is hard 

to separate the translational and rotational effects due to a force alone without the introduction of 

couples. Careful experiments must be devised to present various ways couples may work. Some 

field trips to the science museums may be necessary. Simultaneously students need to master both 

the principle of transmissibility and the force-couple equivalency. By adding and subtracting the 

same force at a point not lying along the axis of the original force equivalently represents the same 

force at a new point of application, plus a new couple. In addition to observing experiments in a 

laboratory setting, students must solve some illustrative examples (e.g., Figure 1) to realize why 

couples may be called free vectors.  It is advisable to assign homework and quizzes for them to 

practice moving forces on the same rectangular block ABCO as illustrated below.  Finally, similar 

technique must be presented for three dimensional systems on the same block of solid by moving 

across the diagonals. Vectors will be used for such couples. 

 

Figure 1. Why a couple is considered a “free vector” 

 

Force-Couple Equivalency 

So far, arguments presented above established the need for emphasizing force-couple 

equivalency. Now we illustrate the concept of moments and give reasons why the association to 

force-couple equivalency is lost sooner than anticipated during the final examination time in 

Statics.  Rotational effect caused by couples are limited only by their rotational direction and 

sense. We shall first discuss the moment calculations by vector and scalar methods, and to what 

extent these topics need to be presented for retention of concepts. 



The moment of a force applied at A about the point O is given by  𝑀0
⃗⃗ ⃗⃗ ⃗⃗   = 𝑟 × 𝐹 , where, r


 is the 

position vector from AtoO . The non-zero cross product implies that 𝑟  and 𝐹  are not parallel to 

each other. When they are parallel, i.e.,  is 0, 𝐹  may be extended to pass through O causing a 

zero moment. Now decompose 𝐹 ⃗⃗  ⃗ = 𝐹 ⊥ + 𝐹 𝐼𝐼, where, 𝐹 ⊥and 𝐹 𝐼𝐼 are mutually orthogonal to each 

other, forming the basis vectors mathematically (see Figure 2).  

 

 

Figure 2. Two alternate ways to express a moment vector’s magnitude 

Since  𝑑 =  |𝑟|⃗⃗ ⃗⃗  𝑠𝑖𝑛, 𝑎𝑛𝑑, 𝐹⊥ = |𝐹|⃗⃗ ⃗⃗  ⃗𝑠𝑖𝑛 , ∴ |�⃗⃗� 0| =  |𝐹 ||𝑟 |𝑠𝑖𝑛 = |𝐹 |𝑑 = 𝐹⊥|𝑟 | represents two 

alternate ways to express the same moment by the construction process shown above. 

Another way to view this result is as follows. Since 𝐹  has two possible effects on a rigid object – 

viz. a translation and a rotation, one extreme case is when the force loses its power to cause a 

rotation about the point O. The other extreme case is when the angle between 𝑟  and 𝐹  is 90. 

Then the distance between 𝑟  and 𝐹  becomes a perpendicular distance making the moment the 

largest possible magnitude of 𝑟 × 𝐹 . Geometrically speaking, the area of the parallelogram 

formed by placing 𝑟  𝑎𝑛𝑑 𝐹  along two adjacent sides turns into the area of a rectangle when the 

bearing angle becomes 90. Mathematically, these two cases form two different scalar forms of 

calculating moments which was generalized by Varignon in the form of his famous theorem 

[12]. The magnitude of the perpendicular distance d between the point O and the force 𝐹  forms 

the most popular scalar form of moment |𝑀0
⃗⃗ ⃗⃗  ⃗| [= F. d], that most Statics students memorize to 

use.  

To complete the discussion of the general case of the moment calculation, let us now decompose 

both the position vector and the force into their respective Cartesian components (see Figure 3). 



 

Figure 3: Using orthogonal components for moment calculation 

𝑟 × 𝐹 = (𝑟𝑥𝑖̂ +  𝑟𝑦𝑗̂) × (𝐹𝑥𝑖̂ +  𝐹𝑦𝑗̂) = 𝑟𝑥𝐹𝑥 𝑖̂ ×  𝑖̂ + 𝑟𝑥𝐹𝑦 𝑖̂ ×  𝑗̂ + 𝑟𝑦𝐹𝑥 𝑗̂ ×  𝑖̂ + 𝑟𝑦𝐹𝑦 𝑗̂ ×  𝑗̂  

= (𝑟𝑋 𝐹𝑦 − 𝑟𝑦 𝐹𝑥)�̂� 

Due to the cross-product rules of unit vectors, the above expression simplifies and confirms the 

clockwise and the counterclockwise rotations of each of the components about O – a difficulty 

many students fail to realize while learning only scalar approaches. Therefore, it is advisable to 

present up to this mathematical level suitable for all students (having learned vector calculus). 

Moreover, it is important to note the direction of rotation offered by the cross products is by the 

right-hand rule (RHR). Why clockwise rotation is produced by a vector in the negative k̂  

direction is often not clear to many struggling students. An effective illustration would be to ask 

a struggling student to torque a sheet of paper placed on a flat table with one finger. 

The last equation discussed above also provides a necessary introduction and reinforcement of 

the famous Varignon’s theorem: 𝑟 × 𝐹 = 𝑟 × (𝐹 1 + 𝐹 2) = 𝑟 ×  𝐹 1 + 𝑟 ×  𝐹 2. In other words, if 

the force is conveniently resolved into two components, the sum of moments due to each 

component about any point is the same as the moment due to the force itself about the same 

point. The most useful form of this theorem comes during problem solving when each Cartesian 

component of the position vector as well as the force vector is computed by selecting preferred 

axial directions. After the disappearance of about 30 years, the name Varignon’s theorem has re-

appeared in most text books because of the emphasis on this area in recent years [12, 13]. ESCC 

recommends use of this name instead of Law of Moments. Many professors use the term moment 

and couple synonymously, which should be avoided. Instead remind students that moment is a 

measure but couples are free vectors which can cause same rotational moment about any 

arbitrary point.  



For FBD’s in Statics with many forces and couples, force-couple equivalency is used to move 

each of the applied forces plus the external couples to a single point at O (say) where a support 

introduces reactions. All the reactions necessary to create an equilibrium of the rigid body must 

be equal and opposite of the net unbalanced force and couple at O. Thus, the equilibrium 

equations may be written as ∑ 𝐹 = 0, 𝑎𝑛𝑑, ∑𝑀0
⃗⃗ ⃗⃗  ⃗ = 0. 

Once the students reach Dynamics, they begin processing the dynamic equilibrium as a cause 

and effect process mentioned before. Complexities in dynamical motion begin with reinforcing 

Chasle’s theorem. Conceptually contrast n-t and cylindrical coordinates. Derive the rate of 

change of unit vectors for n-t coordinates but conduct student group discussions in cylindrical 

coordinates. This derivation should not be skipped as it reinforces concepts of secants and 

tangents to a curve also, and extends readily into derivation of differential equations in ideal 

flows. Adopting the connected approach students should be able to learn the integrated concepts 

introduced in momentum and energy methods for particles and rigid bodies. Once the students 

understand the trigonometric, vector and the scalar approaches well, the remaining tasks 

concentrate on analyzing relative motion and employing the use of KD’s. 

What was learnt in the form of forces and moments may equally be extended to motional 

concepts. Students should be exposed to concepts of continuum mechanics from here on. 

Summary of fluid flow tasks in ideal flows are shown in the figure below.  

 

Figure 4. Organization of Ideal Flow Mathematical Topics [4] 

 

The above flowchart (Figure 4) shows connectivity of relevant mathematical concepts which 

must be strengthened as students proceed from Statics to Ideal Flows. By the time students reach 

Fluids II all mechanics concepts necessary to understand formulations and solutions have already 

been presented and reinforced. The breadth of applications in our program begin rapidly from 

this point onward. Fluid Mechanics concepts similar to Statics require recall of many of the 



above ideas. So frequent reinforcements are necessary. Macro fluid mechanics begins with the 

continuum hypothesis which allows better connectivity with calculus as a tool. After initial 

coverage of fluid properties Reynolds Transport Theorem is introduced as the sole synthesizer in 

developing a unified theory of fluid motion and forces in both control volume and differential 

approaches. Later it implants conceptual foundations for MECE725- Fundamentals of 

Computational Fluid Dynamics. The first fluids course ends with Engineering Bernoulli equation 

and applications. Some important non-fluid concepts such as Buckingham pi theorem and 

similarity principles are introduced. It is important to take students into nondimensionalization 

and its benefits first with algebraic equations and then with differential equations in the elective 

course. This completes connectivity of lower level core classes and also heat transfer with 

advanced fluid mechanics. Scaling of fluid flows which is never well-understood by students 

finds support from experiments and digital media. The classes then advance to electives such as 

ideal flows, convective phenomena and CFD. At these levels continuum mechanics ideas should 

be introduced but with a standpoint of vector calculus, matrices and boundary value problems. 

By the end of the 5th column applications in figure 4 students see examples from tornadoes, wind 

tunnels, superposition in design methodology, wall interference correction schemes, in addition 

to some wave equation demonstration and interesting shock tube experiments. The learning 

experience is made lucrative by a unique re-grading motivator (see Appendix C for some student 

comments) which attracts student engagement/learning. Motivated students implement codes and 

likewise may design them [14] knowing their fundamentals, or take charge of contributing to 

better education for future students through projects with paper [15]. 

Results 

Our unified performance-based direct assessment process has several benefits at a modest 

increase of workload for faculty. First it increases the assessment pool to provide more statistical 

reliability. The target assessments are easily trackable due to a well-maintained archive of 

examinations for comparisons of different courses laterally, and/or testing retention of the same 

concept longitudinally over time. The examples below show some reinforced results from ESCC 

archives. The examples demonstrate tracking of vectors and coordinates with relevance to 

mechanics courses which will lead to ideal flows later. Another longitudinal tracking method for 

vectors may be noted on impact problems in Dynamics. The reasons impact questions suffer in 

performance are well understood now [16, 17]. These involve misunderstanding FBD’s, which 

conservation law applies for inelastic impacts, whether to conserve momentum singly or the two 

particles together as a system, and oblique impact solutions. This area is not discussed here due 

to its lack of connectivity with fluid mechanics.  

The first two questions on figure 5 are borrowed from 2013Spring and 2015Spring Dynamics 

final examinations showing connectivity with velocitycomponents and physical interpretation of 

slopes, and the third question is taken from a 2017Spring final examination of Fluid Mechanics 

reinforcing concepts of streamlines. The first question was correctly answered by 51% students, 

while the second and third questions were correctly answered by 66%, and 80% of the classes 

respectively. 



 

Also, we tracked the same area of streamlines as we move from Fluid Mechanics to the elective 

Fluids II as shown on the figure 6 below. This time the question is related to the topic of streamline 

evaluations as shown in the two quiz questions, the first as a part of a set of MC questions, and 

then as a part of a stand-alone quiz of 10-minute duration on two different tests. On each the class 

performance was better than 80% correct for the streamline evaluation, plus on the part (c) related 

to the ideal flows in the stand-alone quiz. 

 

 



 

Figure 6. Streamline concepts carried over from fluid mechanics to ideal flows 

Note that of the above two questions, the MC question asks for the details to get the full credit. 

The work load is not much beginning with the equation (available on the formula sheet) 
𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
. 

The important task is to check if students carry out the integration and the constant evaluation 

correctly by fitting the point (2, 1) on the streamline. If they do not show the work, they get only 

one point usually allocated for MC questions on a class quiz. They may also incorrectly perform 

the integration, simplify the ratio incorrectly, or, evaluate the constant incorrectly, which would 

be revealed from the given choices. If the class performance was not up to expectations, students 

would still get the opportunity to improve their score on the question by resubmitting the quiz 

[18]. If the class size is small enough, alternate and accurate assessment may be performed using 

a stand-alone quiz as the Quiz No. 3 shows. As always, a prompt return of the original quiz is 

necessary so that students can relearn the missed topic over the approaching weekend (see 

Appendix B for a note sent to students). 

The relevant flow viscosity questions are preceded by understanding of dry friction first in 

dynamics and then (with the help of strength discussions) contrasting each with fluid friction 

behavior. Much of the fundamental review of viscous boundary layer comes after the ideal flows 

coverage. Let us therefore focus solely on mass and momentum conservation laws as shown on 

figure 7. Here is an example of tracking three questions on relative motions. 

   



 

 

Figure 7. Use of vectors tested by Component method and parallelogram law in Dynamics (2015 & 2016 Fall 

final exams), and using dot products in Fluid Mechanics (2016 Spring Final) 

For the first two questions taken from Dynamics, the focus is component addition/subtraction to 

obtain relative velocity - but the second one uses geometrical construction of a negative vector 

and parallelogram/triangle of vectors. The third example on the figure is from fluid mechanics 

involving dot product and its interpretation in finding fluxes of fluid mass and momentum. Once 

again, the performance was better than 65% correct on each examination demonstrating that such 

instructional reinforcement is very effective. 

One of the areas of prime importance extending from dynamics to fluids is the understanding of 

rigid body rotation and contrast it with fluid rotation. Ideal flow behavior is simplified with 

potential flow fields but singular flows are abundant to check on the rotation feature. The 

instructor screens the movie Vorticity [11] to clarify many conceptual ideas such as vorticity, 

circulation, starting and bound vortices, downwash, induced drag, etc., plus Crocco’s, Kelvin’s 

and Helmholtz’s theorems. The performance in ideal flows is assessed using some MC questions 

on quizzes 1- 4, a 15-minute long class quiz 5, the first midterm examination and the final 

examination (see four sample questions from quiz 5 in Appendix A) where students demonstrate 

the concepts and math skills in ideal flows after the 5th week of the class. The emphasis is on 

conceptual recall and mathematical skill reinforcement, and not just the engineering modeling. 



Current trend in flow related industrial work would most certainly place our students on software 

and flow modeling for which understanding numerical accuracy in modeling, and mathematical 

forms of equations would be necessary. Through enticement of various types (see Appendix B 

for an unusually attractive incentive, and positive student comments in Appendix C), instructors 

must excite students to take ownership of the questions and work independently on model 

development. One way to do this is to introduce applications right from the dynamics or, fluids 

course which students regularly use or, have seen before, and prepare a mathematical model 

around it [18]. Note that the first two questions in Appendix A are attempting just that. Since 

students would not recall the speed of sound and Mach number (M) check for incompressibility, 

the second question provides the value of the limiting airspeed of 102 m/s. It does give the 

instructor opportunity to address the M < 0.3 limit while discussing the solutions with students. 

The location of stagnation points, the concepts of stagnation streamlines and their relation to 

control the design of the body shape, the sketching of streamlines in r- coordinates, etc. are all 

focal points of the quiz 5 samples. Figure 8 shows a summary of the performance on quiz 5 from 

2014Spring semester through 2018Fall offering of the Fluids II. On each term the maximum, 

minimum and the average score in the class are displayed. The re-grading offer (if students 

relearn the material) is a very strong incentive which the author discovered over the years. 

Initially a 10-point quiz is graded with 5 points for attending the quiz, plus 5 points for the 

earned grade. But students must demonstrate they correctly know the missed answers to earn a 

better score. Notice that on the 2017Spring semester minimum score is zero which means that at 

least one student in the class never appeared on the quiz and never made up the score by retaking 

later. Also, for the most recent 3 semesters there has not been a single perfect score in the class. 

Only time would tell if this is a developing trend or not.  

 

Figure 8. Class performance on ideal flow quiz 5 for the last four years  

  



Challenges 

Remembering definitions and recalling procedures are difficult for ME students. Often concepts 

get confused because of mixed symbols. In ESCC guidelines these are resolved by several steps: 

1) If possible, all instructors must use common symbols introduced uniformly in all sections of 

the course. 2) Notify students/faculty of confusing symbols from earlier courses while reviewing 

conceptual steps from previous courses. 3) Communicate with instructors of later elective 

courses so that the same symbols may be carried over in follow-up courses. 4) Common symbols 

that are conflicting in textbooks should be pointed out clearly by the course instructors of any 

ESCC course. For example, the symbol h is used as height of a triangle in geometry, or, in 

Statics; altitude or, distance from ground up in Dynamics; the depth of a submerged object from 

the free surface in Fluid Mechanics; specific enthalpy of a fluid in Thermodynamics; and finally, 

coefficient of convection in Heat Transfer. Typically, units for the last two uses mentioned here 

are forgotten during tests. To compound the complexity, average students do not remember to 

recall definitions so that correct units can be quickly verified. Nowadays with accelerated 

learning efforts, we urge faculty members of different core courses work together with upper 

level course faculty to implement and reinforce conceptual recalls in all engineering classes. As a 

result of our unifying approaches for several years we seem to have achieved moderate success 

in examining conceptual recalls demonstrated in the ideal flows topics. Figure 9 displays 

performance on first midterm examination for AY 2014 – 2018 summarizing effects of 

conceptual connectivity.  

 

Figure 9. Class performance on ideal flow Test 1 for the last four years  

In future we will revive a focus on engineering formulations. Many engineering professors 

introduce engineering formulations without any conceptual relevance to mathematics. Instead 

formulations must be understood a priori by solvability and uniqueness of solution to 



mathematical equations. Disallow all random assumptions. Instead ask students to make 

assumptions to better simplify a formulation and only those which assist solvability of equations. 

Explain earlier used examples from Dynamics and Fluid Mechanics to reinforce these ideas. 

A flipped course structure is a noticeable flaw in many core courses. Not all engineering topics are 

suitable for a flipped course structure. Topics which require breadth only are perfect for senior 

design groups to search on the Internet. But students often pick incorrect formulae for analytical 

models because they lack the depth of understanding. Once shortcuts develop in a mathematical 

thinking process, it becomes very hard for those students to unlearn them. Negative feedback was 

experienced in the early stages of data collection when unsupervised student groups proposed 

mathematical models. This may be due to the number crunching solution style adopted by many 

ME faculty. ESCC collects and preserves the actual final examinations of both MC and analysis 

questions to resolve these issues. We have just begun a new symbolic and mathematical emphasis 

[18] in ESCC. We hope that this trend continues in future to broaden the scope of connectivity 

steps proposed here. 

Similar work needs to be performed to implement specific strategies in other elective courses. 

Once students develop the pattern of attaching mathematics with its conceptual understanding, 

they become self-guided operators. But faculty guidance and mentor scaffolding are essential.  

Concluding remarks 

A subject like ideal flows has far reaching concepts from the standpoint of physics and equally 

challenging mathematics. A simplified treatment is presented here (suitable for our mechanical 

engineers) by focusing only on the classical solution methods. If complex analysis was available 

as a tool, it could expand the understanding even more for aerodynamicists.  

Strengthening and linking dynamics and mathematics are important for ME students because all 

formulations in fluid mechanics and ideal flows depend on extension of dynamics concepts. 

More experiential learning must be developed from ESCC leads. Other upper level elective 

courses should also be brought into this effort and connected as shown in this paper to provide 

sufficient breadth in the whole curriculum. If faculty groups prepare tutorials with completely 

worked out examples and constantly monitor student group performance with complete rigor in 

analysis, engineering learning of mathematically challenging courses may bloom even more. 

This is our goal to meet in future.    
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Appendix A 

This appendix contains four examples of quiz 5 questions. Each question involves a fair amount 

of mathematical use, thoughtfulness for proper modeling and accuracy in execution, all of which 

are required for successful development of CFD understanding. Moreover, these questions 

present conceptual links in understanding applications mentioned in this paper. Streamlines 

which are typically used as flow visualizers may act as concept builders for wall models in ideal 

flows. The boundary conditions for slip flows must be reviewed. Streamlines and equipotential 

lines lead to development of curvilinear grid systems which are commonly used later in CFD 

software. At the undergraduate level, creating some models of wind tunnel applications on the 

computer is very interesting for students. Our current laboratory exposure also offers application-

oriented demonstrations for wave equations, shock-tubes, etc. Overall clarity in understanding 

mathematical depth acts as a big motivator for students at upper undergraduate levels (see 

student comments in Appendix C). 



    



Appendix B 

The opportunity to relearn missed concepts for a better grade is a very powerful motivator. The 

following instructional style was adopted a few days from the beginning of the course after the 

first concept review quiz [18]. See the memo to the class below. 

 

Appendix C 

Here are three different student comments that were given on the course review  

I could see CLEARLY how much interest you took to make sure we all understand the information and 

topics. This is very refreshing to me, especially when most engineering professors don't show nearly the 

passion and interest that you demonstrated every day. You were always willing to meet with us out of 

class and actively sought to improve our understanding of the material, not just for the class, but for our 

futures as engineers. I thank you for that. You are very knowledgeable in the topics of the class and made 

sure all the time of each class was used effectively. You always asked for our honest feedback throughout. 

I love the fact that we can do the quiz and test corrections. That's great, because it encourages us to go 

back and understand what we got wrong, and the reason we missed a question. I think that is a much 

better way to grade and motivate/encourage learning, than not offering corrections. The lectures are very 

interesting. I finally started to feel pretty comfortable with a lot of the calculus and math concepts behind 

a lot of engineering in this class because Dr. Ghosh explains it so well (and spends so much time on it). 

The 550CD notes are a really powerful reference. I loved the movie that he showed in the beginning of 

the semester. It really helped, have a physical understanding of fluid mechanics and understand the 

conventions and math principles. I really appreciate how Dr. Ghosh focuses on making sure you 

understand the physical reasons behind the math and formulas. 

I think his grading appropriately reflects his teaching/testing style, which I like. Dr. Ghosh wants people 

to understand his material on an intimate, conceptual level which requires tests and quizzes be more 

difficult because you cannot simply rely on knowing formulas. He therefore is quite lenient with grading 

and awarding points to wrong answers that he believes were conceptually on the right track. He asks a 

lot from his students but does not punish a more difficult style of teaching/learning with harsh grading, if 

that makes sense… 
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