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Characterizing MOOC Learners from Survey Data Using 
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Purdue University  

 

Abstract:  
MOOCs (Massive Open Online Courses) attract a diverse and large set of learners, with largely 
unknown learning needs and expectations. Researchers have been exploring why learners enroll 
in MOOCs and have found that learners enroll for a variety of reasons. Knowing who these 
MOOC students are is an important step in improving their educational experience and the value 
of MOOCs.  It is therefore vital to identify and understand what distinct student groups exist in a 
MOOC, that is, to learn who they are and what they want. Pre-course surveys try to collect this 
information by asking students about who they are and what they want from the MOOC they are 
enrolling in.  However, making sense of this survey data is challenging. 

Machine learning clustering techniques are a standard tool for identifying groups within data; 
however, two problems exist when trying to cluster survey data: (1) it is often not in a form easily 
interpreted by clustering algorithms and (2) survey data is frequently high dimensional, which 
standard clustering techniques cannot handle well.  We describe a technique for converting 
survey data into machine interpretable feature vectors.  We then propose analyzing the data 
using the 𝑛𝑛-TARP clustering technique which is capable of efficiently finding multiple different 
cluster solutions and is scalable to high dimensional data. 

Using the proposed analysis approach on pre-course survey data from four MOOCs resulted in 
multiple distinguishable groups (i.e., clusters) of learners in each course, thus confirming the 
existence of many different survey response patterns.  Additionally, these criteria persist 
between STEM and non-STEM courses. That is, we found learners grouped into similar clusters 
regardless of the course topic. The ability to separate learner types into distinct categories within 
and across courses is an important step in furthering the goal of enabling MOOC designers to 
design better online open educational systems that serve their diverse set of learners. 

Keywords: clustering, MOOCs, survey analysis, open online education, educational data mining  

1. INTRODUCTION 
MOOCs (Massive Open Online Courses) often attract a diverse set of learners with a variety of needs 
and goals [1]. This diverse learner base provides an opportunity to learn about how and if learner 
goals vary by examining MOOC data. An understanding of these data can inform the design of future 
learning opportunities in engineering education and other fields. One way to identify these learner 
needs and goals is through MOOC pre-course surveys. However, because of the potentially vast 
number of learners in a MOOC, finding meaningful ways to utilize this survey data is challenging. If 
there exist a diverse set of learners within MOOCs, then simply looking at the learners’ survey 
responses will not help us understand the people within those groups since important differences 
will be averaged out.   

MOOCs are often designed with only a single type of user in mind—namely, someone who follows 
all the course material in a sequential manner. In other studies, these MOOC learners have been 
called “completing” [2] or “fully engaged” [3], but these learners are not the only type of people in 
the course. It is common for a large portion of the learners to either disengage with the course 
before completing it or to only access certain types of materials.  Given MOOC learners’ low 
completion rate, many researchers have argued that not all learners even intend to complete the 
course.  Moreover, if some learners never intended to complete the course, then, completion is no 
longer a meaningful indicator of success for MOOCs [4]. Therefore, we need to develop other, more 
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meaningful metrics of student success and course evaluation. One such metric could come from 
improving our understanding of the variety of learner goals and intentions within these open online 
courses.  

What is needed is a way to identify which individuals are similar, group them, and then characterize 
the diverse learner groups in useful ways. While there are many statistical techniques for finding 
patterns in data—including clustering data into distinct groups—these techniques typically require 
the data to be in the form of vectors in some space equipped with a distance measure. However, 
survey data is challenging to translate into this form, as answers can be missing or inaccurate, and 
survey questions may differ between courses or even from one course offering to the next. 
Additionally, survey results are likely to result in high-dimensional vectors characterizing each 
learner, and high-dimensional data is notoriously difficult to cluster. Furthermore, with diverse 
learners, there are likely numerous different statistically valid ways to group the learners into 
clusters, but most clustering techniques generate only a single cluster solution. 

In this paper, we use a recent clustering technique on pre-course surveys data to identify learner 
groups with different motivations and intentions. Through pre-course surveys, learners can provide 
self-reported information such as their motivations, expected obstacles, hopes, or prior knowledge 
and experience. This learner-provided information hopefully contains useful clues on how to help 
learners achieve their goals, clues which could help inform the design of future learning 
environments according to the needs and goals of these different learner groups.  

From an educational data mining perspective, analyzing the motivations of MOOC learners is a 
challenging task for two different reasons. First, survey answers must be represented in a consistent 
and relevant numerical way so that they can be analyzed efficiently. Second, the number and 
diversity of the learners suggest many different patterns of motivation may exist, each of which may 
be a reasonable way to group the learners. We address these two issues by extending the clustering 
approach of [5] which presents a computationally fast clustering method called 𝑛𝑛-TARP.  Our 
extension is designed to find patterns in qualitative data coming from pre-course surveys. Briefly, 
the 𝑛𝑛-TARP works by generating and testing many randomly generated criteria for identifying groups 
(i.e., clusters) within the data. The feature vectors describing each student are constructed by 
classifying the survey questions into broader categories. Each learner’s answers to the categorized 
questions are then modeled using a parametric random process.   

In the following, we propose a 𝑛𝑛-TARP-based method to analyze pre-survey Likert scale questions to 
identify distinct subgroups of students. Using this method, we investigated the questions “Does the 
𝑛𝑛-TARP clustering technique result in interpretable groups of MOOC learners?” and “If so, what can 
we learn about these learner groups?” To this end, we tested the 𝑛𝑛-TARP method on pre-course 
survey data acquired in multiple MOOCs offered on a popular MOOC platform. We examined four 
courses, two undergraduate STEM courses which would be required in their respective programs (an 
undergraduate mechanical engineering course and an applied science course) and two elective 
courses (a mathematics course and a course on wellbeing). These courses’ pre-course surveys asked 
learners questions concerning their goals and applications for the course and their intended level of 
participation, among others. We hypothesize that MOOC learners form groups with distinct 
characteristics, and that these groups can be identified using pre-survey data.  

2. RATIONALE FOR SELECTING CLUSTERING METHOD 
Clustering is a well-studied unsupervised machine learning problem. Many popular clustering 
methods are available for clustering points in a low dimensional space: for example, k-means [6], [7], 
kernel k-means [8], the EM (Expectation Maximization) algorithm [9], and DBSCAN [10]. These 
methods are quite effective at identifying clusters of points in low dimensional space. However, in 
higher dimensional spaces the problem of finding clusters becomes more complicated due to the 
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curse of dimensionality [11]. The curse of dimensionality is the idea that data with many dimensions 
are inherently sparse—the data points are distant from each other—causing clustering algorithms to 
struggle to find similarities (and therefore clusters) between the data points. In the current study, 
dimensions are characteristics describing a person. For example, some dimensions of a person could 
include their age, where they were born, and their field of study. In this study, we examined 15 
learner dimensions as indicated on a course pre-survey—dimensions related to their interests, the 
applications of what they hope to learn, and their perception of how their lifestyle may or may not 
inhibit their completion of this MOOC.  

Several methods have been developed to address the complexity of finding patterns in high 
dimensional data (e.g., CLIQUE [12], FIRES [13], and PROCLUS [14]). However, typical approaches to 
high dimensional clustering are deterministic and seek to find only a single cluster structure solution 
within the data. Previous research has found that non-deterministic approaches can find multiple 
different cluster solutions, each which corresponds to a different separation criterion (separation 
criteria are used to determine cluster assignments) [15].  

Previously, our team presented a clustering method called RP1D which can efficiently identify 
multiple cluster solutions, even within high dimensional data [5].  RP1D is a hierarchical clustering 
method, that is, a clustering method where each identified cluster is input back into the algorithm to 
identify further cluster subgroups.  Each iteration in hierarchical clustering is called a level.  In the 
current study, we used a single level adaptation of RP1D called 𝑛𝑛-TARP.  In the next section, we 
summarize the 𝑛𝑛-TARP method as it was first introducted in [15]. 𝑛𝑛-TARP’s single level 
implementation of RP1D was sufficient in this study as we were looking for multiple separation 
criteria to apply to the whole dataset. Our team has also previously shown that 𝑛𝑛-TARP is useful for 
finding multiple different patterns in the data, and that it is scalable to high-dimensions (i.e., greater 
than 40 dimensions) with only a modest increase in computational cost (as shown in [5]) while still 
yielding statistically significant clusters (demonstrated in [15]).  

3. METHODS  
Figure 1 shows the steps in our data modeling and clustering method for survey data, which we 
extended from the approach described in [15]. We first grouped similar questions so to model the 
learners’ response patterns as a parametric random process. We then used the parameters of that 
random process to represent each learner as a vector in a high-dimensional space. We then 
clustered the learner vectors using 𝑛𝑛-TARP—the one level version of the random projection into 1D 
(RP1D) method of [5] (as done in [15]). We expected this approach to find multiple binary clusters. A 
binary cluster is a set of exactly two clusters into which the whole set of learners is split.  Each of the 
expected multiple binary clusters is associated with a specific separation criterion which specifies 
how the learners are split into the two groups.   

 
Figure 1: Flow diagram of the data analysis.  Text outside a box describes the data (either raw or processed).  

Text within boxes describe actions performed on the data. 

Modeling the data as a random process 
As a preliminary test of the method, we coded eight 5-level rating-scale (Likert) survey questions 
into three categories nominally called 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3. We designated the rating scale levels as 𝑅𝑅1 for 
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strongly agree to 𝑅𝑅5 for strongly disagree. We viewed the set of possible combinations of question 
category, 𝐶𝐶𝑖𝑖, and response, 𝑅𝑅𝑗𝑗, as a random observation obtained by sampling among the categories 
and responses following some (unknown) probabilities. We estimated these probabilities by 
calculating the frequency of each respondent’s category/response combination. In this way, each 
category/response combination becomes the estimated probability for a dimension describing that 
student.  We stored the estimated probabilities for each student as the entries of a 𝑝𝑝-dimensional 
feature vector of real numbers which exists in the real-number space of ℝ𝑝𝑝 where 𝑝𝑝 is the number 
of dimensions that ultimately described each student. The 𝑝𝑝-dimensional vector data thus 
represented each learner’s probability of responding to each question code, 𝐶𝐶𝑖𝑖, with the response, 
𝑅𝑅𝑗𝑗.   

As an example, given three rating scale questions with five-levels (𝑅𝑅1 − 𝑅𝑅5) all coded as 𝐶𝐶1, a learner 
who responds strongly agree (𝑅𝑅1) to one of those questions and agree (𝑅𝑅2) to the other two 
questions has the following five-dimensional vector for questions categorized as 𝐶𝐶1 (in this example 
𝑝𝑝 = 5 and the vector is in ℝ5):  

𝑪𝑪𝟏𝟏(𝑹𝑹𝟏𝟏) 𝑪𝑪𝟏𝟏(𝑹𝑹𝟐𝟐) 𝑪𝑪𝟏𝟏(𝑹𝑹𝟑𝟑) 𝑪𝑪𝟏𝟏(𝑹𝑹𝟒𝟒) 𝑪𝑪𝟏𝟏(𝑹𝑹𝟓𝟓) 

�
1
3
� ≅ .33 �

2
3
� ≅ .67 �

0
3
� = 0 �

0
3
� = 0 �

0
3
� = 0 

We then store these five values as part of that student’s feature vector.  The feature vector can grow 
beyond five dimensions if other categories also exist for that student (for example, 𝐶𝐶2). The feature 
vector could grow to many dimensions if it includes many categories and responses. 

We recorded the feature vector for each student who fully completed the survey. For simplicity, we 
removed students with missing responses before proceeding to the next step—identifying clustering 
criteria. 

Clustering 
To identify clusters within these feature vectors, we used the 𝑛𝑛-TARP method [5]. The method has 
been shown to be effective for educational data in [15] even though it was initially developed for 
images [16]. 

The 𝑛𝑛-TARP clustering process as implemented is summarized below (from [5]):  

1. Generate a random independent and identically distributed (i.i.d.) vector in 𝑝𝑝-dimensions 
where each element is drawn from a uniform random real-number distribution in the range 
[0, 1].   

2. Project the feature vectors (representing the students’ survey responses) onto the random 
vector (RV) by taking the dot product of the two vectors (Equation 1). Find the projection 
value for each student vector onto the random vector.  The collection of all projections is 
designated the set of projection values. 

 𝒂𝒂 ∙ 𝒃𝒃 = ∑ 𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2 + ⋯+ 𝑎𝑎𝑘𝑘𝑏𝑏𝑘𝑘
𝑝𝑝
𝑘𝑘=1   Equation 1 

Where 𝒂𝒂 is a student’s feature vector, 𝒃𝒃 is a random vector, and 𝑝𝑝 is the number of 
dimensions present in the vectors. 

3. (Optional) Construct a histogram of the set of projection values. If the histogram is bi-modal, 
then a successful pair of cluster groups has been found. This random vector is a separation 
criterion candidate.  

4. For the set of projection values, search through the possible projection values for the 
threshold value, 𝑇𝑇, that minimizes 𝑊𝑊, the total intra-class variance renormalized by the 
variance of the projected data as discussed in [5], [16].  𝑊𝑊 measures to what extent the set 
of projected values divide into two groups. Small values of 𝑊𝑊 are associated with a well-
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defined binary clustering.  We use the threshold value of 𝑊𝑊 = 0.36 to select well clustered 
projections, as suggested by [5], [16]. Group 1 is defined as students whose projected value 
is smaller than the threshold, 𝑇𝑇, and Group 2 as equal to or above 𝑇𝑇.  

5. Repeat the above process steps 𝑛𝑛 times (note, the total number of iterations is the 𝑛𝑛 
parameter in 𝑛𝑛-TARP). 

6. Identify separation criteria as those random vectors that produce 𝑊𝑊 < 0.36 with the data. 

Grouping descriptions with statistical response pattern tables 
Once we identify the clusters, we then average each group’s responses in each dimension and 
present this data in a tabular form. We compare the average responses of each group to identify the 
differences between the two, i.e., the criteria that resulted in their separation. We can compare the 
group responses with the corresponding random vector entries to gain insights on the separation 
criterion. We will further elaborate on this analysis procedure while describing our experiments and 
results in the next section. 

4. EMPIRICAL STUDY  
We studied four courses offered by a large MOOC provider (listed in Table 1).  We choose these 
courses for their variety of class sizes (119–3,275 students) and subject areas (within and outside of 
STEM) as well as their being either core and elective courses. In our analysis of these courses, we 
used all eight of the rating scale questions from the pre-course surveys. We list these eight rating 
scale questions in Table 2. We used the rating scale questions because of their similar form which 
expedited this exploratory study.  

Table 1: Courses and post-cleaning student counts 

Course number Course subject area Learner count: Available (Post-cleaning3) 

1 Applied science1   2,032 (1,866) 

2 Mathematics2 750 (695) 

3 Undergraduate mechanical engineering1  119 (100) 

4 Wellbeing2 3,275 (2,987) 
Notes: 1Undergraduate core course, typical within its respective program; 2Elective courses; 3We removed 
learners with incomplete responses for this exploratory analysis 

For compatibility with the 𝑛𝑛-TARP based method discussed in section 3, we grouped the eight 
questions into three categories. The questions and their category codes are listed in Table 2.  The 
three categories in Table 2 (𝐶𝐶1 ≡ Personal Interest,𝐶𝐶2 ≡ University Application, and  𝐶𝐶3 ≡ Fit with 
Lifestyle) and the five possible response options to each questions (𝑅𝑅1 − 𝑅𝑅5), means the resulting 
feature vectors belong in ℝ15 (that is, three categories times five possible responses result in 15-
dimensional vectors). While 15-dimensional data is only moderately high dimensional, in future 
work, we will extend our method to deal with additional survey questions which will increase the 
dimensionality of the data. The method at its core is easily scalable and designed for higher 
dimensional data. 
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Table 2: Rating scale pre-survey questions analyzed. For each of these eight statements, the learners were 
asked “To what extent do you agree with the following statements?” and could select from a five-point rating 

scale ranging from “Strongly Agree” to “Strongly Disagree.”  The statements are shown here in the order asked. 

Pre-course survey statement (i.e., question) Code 

“I'm taking this because I want to learn about the subject” Personal Interest  

“I'm taking this course to do my current job better” Personal Interest  

“I'm taking this course to improve my career prospects” Personal Interest  

“I'm taking this course to support current or future studies” Personal Interest  

“To support a university application” University Application  

“To find out more about the institution running the course” Personal Interest  

“I'm taking this course to find out how FutureLearn works” Personal Interest  

“I'm taking this course because I can fit it round my lifestyle” Fit with Lifestyle 
 
Results and discussion 
Applying our clustering approach to our survey data with 𝑛𝑛 = 1000 did, in fact, reveal multiple 
distinct learner groupings. This finding confirms our hypothesis that there exist multiple measurably 
distinct ways to group learners in these MOOCs.  That is, there is more than one way to justifiably 
group a set of learners. 

In each of the four courses examined in this preliminary study, we have found between 20–60 
separation criteria (random vectors). Each of these criteria is used to split the learners into two 
distinct groups based only on their pre-survey responses. Figure 2 shows three representative 
histograms using the best three criteria identified in the applied science course. Notice the low 𝑊𝑊 
value and the well-separated bimodality seen in each histogram. Marked on the histograms is a 
dashed vertical line showing the optimum threshold, 𝑇𝑇—the point which best separates the learners 
into two distinct groups, as described in [5]. (The method to calculate 𝑇𝑇 was described in section 3.) 

Histogram of Projections  
onto RV249 

 

Histogram of Projections  
onto RV242 

 

Histogram of Projections  
onto RV915 

 
𝑊𝑊 =  0.179;  𝑇𝑇 =  1.65 𝑊𝑊 =  0.180;  𝑇𝑇 =  1.37 𝑊𝑊 =  0.199;  𝑇𝑇 =  1.12 

1297 (70%) learners in Group 1 
568 (30%) learners in Group 2 

1056 (57%) learners in Group 1 
809 (43%) learners in Group 2 

648 (35%) learners in Group 1 
1217 (65%) learners in Group 2 

Figure 2: Histograms of the top three random vector (RV) separation criteria (those that best minimize the 
Within Sum of Square value, 𝑊𝑊, for the applied science course’s pre-surveys (N = 1,865).  A total of 31 criteria 

(of 1000) provide adequate group separation (that is, having 𝑊𝑊 <  0.36 according to [5]). 

It is interesting to note the different response patterns of the students in different groups and to 
compare them with those of the entire applied science class. First, Figure 3(b) (the middle column of 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 
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Figure 3) shows the mean values for the 15-dimensional feature vector for all students in Course 1.  
We will be comparing the groups identified by 𝑛𝑛-TARP with this “baseline profile” (Figure 3(b)). 
Figure 3 also shows the response statistics for the first two criteria shown in Figure 2 (i.e., Group 1 
and Group 2 identified by applying the separation criteria RV249 and RV242). Note that while each 
of these separation criteria identifies distinct groups, the group characteristics are very different.  

 
Figure 3: For course 1’s top two separation criteria (RV249 and RV242 shown in (a) and (c), respectively), the 
response pattern statistics for the applied science course result in distinct response groups (labeled Group 1 

and Group 2, matching the labels from Figure 2). The dimensions that are unaffected by the criteria (i.e., 
personal interest and university application for RV249; fit with lifestyle for RV242) remain consistent (within 

5%) of the mean responses for the entire set of learners (shown in (b)). 

When examining criterion RV249 we see that for each of the five response options, the personal 
interest and university application codes are very similar across all three groups (Group 1, Group 2, 
and all learners), differing by no more than 5%. For RV249 the fit with lifestyle code shows 
substantial distinctions between the two groups with practically all learners who agreed with the 
statement belonging to Group 1 and all who were neutral or disagreed in Group 2. When examining 
the question associated with the fit with lifestyle code—“I’m taking this course because I can fit it 
round my lifestyle”—we can see that criterion RV249 has effectively separated learners who 
believed they could fit this MOOC into their life (Group 1, containing 70% of the learners) from those 
who responded as unsure or negative about their MOOC-lifestyle fit (Group 2, containing 30% of the 
learners) without regard to their personal interest responses. It is interesting that so many learners 
(30%) enroll in a MOOC without believing they have time for it. 

Looking at the groups found with criterion RV242 we see that the responses to the fit with lifestyle 
question are similar between the two groups; however, the university application responses are very 
well separated between groups. The university application code also contained only a single 
statement—“To support a university application”—with which the learner was asked to agree or 
disagree. One interpretation of the two groups is that those who agreed (Group 2, containing 43% of 
the learners) may be university researchers in the field of this applied science while the remaining 
learners have no direct university association. Criterion RV242 also shows some separation for 
personal interest, but this separation is not as pronounced as that of that for a university application. 
As a reminder, the pre-course survey questions associated with these codes are available in Table 2. 

(a) (b) (c) 
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Persistence of patterns in other courses 
Considering the patterns, we found (described above), we next investigated if the same patterns 
exist in the other courses in our study. In other words, we investigated if using the separation 
criteria found for course 1 (e.g., RV249 and RV242) on courses 2–4 also resulted in significant 
groupings of students. We repeated the process by using 𝑛𝑛-TARP to identify separation criteria in 
courses 2, 3, and 4 and then seeing if these identified criteria also identify significant groupings in 
the other 3 courses. We were interested to see if criteria from one type of course (e.g., a small 
undergraduate STEM course) remained valid when applied to other course types (e.g., non-STEM or 
elective or large courses). We expected different types of courses to attract different types of 
learners, so the criteria identified in one course may not result in distinct learner groups in a 
different type of course.  

We show the results of this experiment in Figure 4. Several separation criteria do transfer 
successfully, identifying significant groupings in other courses. For example, when we use criteria 
from course 3 on courses 1, 2, and 4, a strong majority (60–80%) of the criteria are significant in the 
other 3 courses. On the other hand, we also have situations where the criteria are not highly 
transferable to at least one other course. For example, course 2’s criteria do not transfer well to 
course 3 (less than 33% criteria transfer). The other extreme is also observed, as 100% of the criteria 
found using course 1 are valid for course 2. It is interesting to note that when using criteria from 
course 4, fewer than 50% of the criteria transfer to any other course. One possible explanation why 
course 4's criteria might have failed to separate students in the other courses is because course 4 (the 
wellbeing course) is non-STEM, unlike the remaining three courses. The observed lowered criteria 
transfer rate reaffirms the expectation that learners who enroll in STEM courses differ somewhat 
from those in non-STEM courses. However, it is still interesting to observe that a non-trivial number 
of criteria—even if not always a majority—do still transfer to the other STEM courses.  

 
Figure 4: When applying criteria identified in one course to another course many of those criteria still meet the 
𝑊𝑊 < 0.36 threshold.  In each group, the course from which the criteria were first identified is marked (*).  

We next checked the student percentage split between groups using each set of top criteria from 
two courses (Course 1 and Course 2).  To check if the split remained constant or not a single criterion 
from one course was applied to all four courses, then we found the proportion of learners in each 
resulting group (Figure 5). The group proportions remain remarkably similar across courses with a 
fluctuation of no more than 19% (the average fluctuation is 11.3%). This result further indicates that 
some of the criteria we identified in one course can identify similar groupings in other courses. It is 
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also indicative that the students’ responses may be modeled by some global distribution that is 
independent of course. 

  
(a) (b) 

Figure 5: When applying the top three criteria from one course to the other three courses we find that a 
roughly consistent percentage of students fall into each group.  Here we see the percentage of learners who 

belong to Group 1 when the top three criteria from Course 1 (a) and Course 2 (b) are applied to the other three 
courses. The remaining percentage of students are part of Group 2.  In both cases, all three criteria result in 

measurably distinct groups in the other courses (that is, 𝑊𝑊 < .36). 

For the final data visualization, shown in Figure 6, we considered how well a single criterion found in 
one course applies to all four courses. That is, does a criterion identified in one course identify 
similar student groups when applied to other courses? We observe that the groups formed in each 
of the four courses are very similar. RV249 continues to separate the data based on fit with lifestyle 
(Figure 6(a)) while RV242 continues to separate based on university applications (Figure 6(b)). That is 
these criteria from course 1 do find similar patterns in the three other courses. Notice that Figure 6 
also shows the mean values for all students in each course alongside each course’s Group 1 and 
Group 2. For Course 1 these columns contain the same values as previously shown in Figure 3(b).   
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Cross-Course Comparison of Mean Probabilities of Learners’ Responses to 
Differently Coded Survey Questions 

 Groups identified using Course 1’s: RV249  RV242 

  
 (a) (b) 

Figure 6: Applying Course 1’s top two criteria (RV249 and RV242) to all four courses show that criterion RV249 
differentiates learners based on their fit with lifestyle responses (and not personal interest or university 

application) whereas RV242 differentiates on personal interest and university application (and not fit with 
lifestyle).  Shown here are the observed probabilities for each response option by each course’s Group 1, Group 

2, and its entire set of learners (“All”).   

Limitations 
Some limitations of this study include that the dataset was pre-existing and provided as-is, so there 
was limited freedom in our choosing what questions we could analyze. Likewise, since we did not 
write the survey questions, we had to use our best judgment to determine how to group them.  
Also, due to the limited available questions we estimated some of the parameters in this study from 
a single question (i.e., university applications and fit with lifestyle); however, high-quality estimates 
for the random parameters of the learners’ feature vectors require a lot of data, or, in this case, 
multiple questions in the same category to provide redundancy. Additionally, this study examined 
the learners from only a few courses—a small sample in comparison to the whole population space.  

A non-critical mistake occurred during this study’s 𝑛𝑛-TARP implementation, namely the random 
vectors were sampled from the real number range [0, 1] where they should have come from the 
range [-1, 1].  The implication of this mistake is that vectors from only a single quadrant were tested.  
It should be noted that within the other three quadrants there may exist more (and possibly better) 
criteria. Since we did successfully find separation criteria in this quadrant this issue is minimal.  
However, if we had not found patterns then we would have needed to explore the larger space (i.e., 
[-1, 1]) for successful criteria.   

5. IMPLICATIONS AND FUTURE WORK 
Implications 
This study has successfully found significant groupings in student response data in a random 
manner. We have highlighted the best groupings and demonstrated that there exist distinct clusters 
of students independent of courses as well as specific to some courses. This difference in 
characteristics could be used to both better design common course features and more specific 
characteristics of specific courses to increase student engagement and productivity.  
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𝑛𝑛-TARP has the additional benefit of being computationally inexpensive and scalable to high-
dimensional data [5]. It is also non-deterministic which yields a distribution of clusters, each of which 
could identify different patterns in the data and yield distinct insights. The high-dimensional 
application of 𝑛𝑛-TARP will be especially useful when more conventional clustering approaches fail.   

Future work 
The work presented here is still in a preliminary stage. While the data we analyzed in this paper was 
only 15-dimensional, 𝑛𝑛-TARP can scale to high-dimensions [5] meaning that as the dimensionality of 
the survey data input increases 𝑛𝑛-TARP should continue to be effective. We intend to expand the 
dimensionality of the data by including all the questions from the pre-survey instead of the eight 
question subset we used in this study. This goal of including additional questions poses some 
challenges since not all questions have a Likert scale, nor are they all ordinal. Further, in this study 
we considered pre-course survey responses from only four courses; moving forward we plan to 
increase this analysis to over 200 courses. 

6. CONCLUSIONS 
In summary, we proposed a new data analysis approach for survey data using 𝑛𝑛-TARP. We generated 
a distribution of clusters based on student responses to MOOC pre-course survey questions. Our 
approach successfully found multiple significant ways to group (cluster) students based on their 
responses. We also observed that some separation criteria are specific to the course in which they 
are found whereas some other criteria can identify student groups in all the courses tested. These 
criteria, which identify different types of learners, could yield insights to help improve specific 
courses as well as improve the entire learning platform. Knowing to which of these 𝑛𝑛-TARP-
identified groups a learner belongs may also aid in designing more effective learning environments 
for these individuals according to their needs and goals, ultimately improving students’ online 
learning experience.  
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