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Cloud Simulation of a Flexible Manipulator System 
 
 

Abstract:  This paper reports the development of a cloud simulation environment for a single 
link flexible manipulator system, where users can perform a simulation exercise from a remote 
location via a graphical user interface (GUI).  The cloud simulation is an arrangement where 
simulation runs on a server and can be accessed by the users from remote locations.  Within the 
developed environment the user selects desired system specifications via the GUI and passes 
them to the hosting server for the simulation to be performed at the server.  The simulation 
results are subsequently presented to the remote user via the GUI.  This paper details the 
technical development process and highlights its advantages and shortcomings.  A number of 
case studies are also provided to demonstrate the potential of this environment for educational 
activities. 
 
1. Introduction 
 
Simulation is a powerful method of studying the behavior and functionality of engineering 
systems.  With the advancement of Internet and computing technology cloud simulation is 
becoming more popular.  Cloud simulation is an arrangement in which the simulation 
environment is hosted on a remote server and users have access to the simulation environment 
over the web.  A detailed review of web-based simulation is provided by Bryne, et.al. [1].  The 
difficulty of traditional stand-alone system simulation is that the simulation environment is 
hosted on a PC or workstation.  Initial deployment and any new addition or update to the 
simulation software has to be implemented on each computer, which requires time and effort to 
keep the simulation system current.  Cloud simulation is an approach to address this issue 
effectively and efficiently.  As cloud simulation runs on a central server, all the updates can be 
implemented on the server itself, avoiding the time consuming and labor intensive process. 
 

 
 

Figure 1: Basic web server configuration. 
 

There are a number of software tools available for cloud simulation and they are described by 
many researchers, some of these are Mathematica, LabVIEW, and MATLAB [2, 3].  
Mathematica is a computational software based on symbolic mathematics and is used in many 
scientific, engineering, mathematical, and computing fields [4].  LabVIEW is a system design 
platform and development environment for a visual programming language from National 
Instruments.  LabVIEW is commonly used for data acquisition, instrument control, and 
industrial automation on a variety of platforms [5].  Support for web services was introduced in 
LabVIEW 8.6.  The web services runtime engine is run by LabVIEW's built-in web server.  

https://en.wikipedia.org/wiki/Instrument_control


The application web server (AWS) is introduced in LabVIEW 2010.  Unlike earlier versions of 
the LabVIEW web server, AWS does not require LabVIEW to be running on the server.  The 
MATLAB web server enables creation of MATLAB applications that use the capabilities of the 
world wide web to send data to MATLAB for computation and to display the results through a 
web browser [6].  In the simplest configuration, a web browser runs on a client’s workstation, 
while MATLAB, the MATLAB web server (MATLAB server), and the web server daemon 
(http) run on another machine.  Figure 1 shows the basic configuration of web server 
application. 
 
This paper describes the development of a cloud based simulation environment for a single link 
flexible manipulator system described by Tokhi et al. [7].  Main thrust of this paper is to present 
only the technical aspect of the development, rather than a classroom integration.  However, the 
environment can easily be utilized for classroom use, homework, as well as a support tool for 
laboratory experiments.  The next section of the paper will illustrate an outline of the flexible 
manipulator system and its representative mathematical equation along with its boundary 
conditions.  Section 3 shows the Finite Difference (FD) simulation algorithm development 
process that will be implemented for cloud simulation.  Section 4 will demonstrate the cloud 
simulation development using the MATLAB.  Outcomes from some of the cloud simulation 
exercise will be presented in Section 5.  Finally, the conclusion section summarizes the 
findings. 
 
2. Flexible Manipulator System 
 
A schematic model of the flexible manipulator system considered for the development is shown 
in Figure 2, where ooOYX  and XOY  represent the stationary and moving co-ordinate frames, 
respectively.  The axis OX  coincides with the neutral line of the link in its undeformed 
configuration and is tangent to it at the clamped end in a deformed configuration. τ  represents 
the applied torque at the hub. E , I , ρ , A , hI  and pM  represent the Young’s modulus, area 
moment of inertia, mass density per unit volume, cross sectional area, hub inertia and payload of 
the manipulator, respectively. )(tθ denotes an angular displacement (hub-angle) of the 
manipulator and ),( txw  denotes an elastic deflection (deformation) of a point along the 
manipulator at a distance x  from the hub of the manipulator.   
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Figure 2: Schematic model of a flexible manipulator system. 



In this work, the motion of the manipulator is confined to the ooOYX  plane.  The manipulator is 
assumed to be stiff in vertical bending and torsion, allowing it to vibrate dominantly in the 
horizontal direction, and thus, the gravity effects are neglected.  Moreover, the manipulator is 
considered to have constant cross section and uniform material properties throughout. 
 

The dynamic equation describing the motion of the flexible manipulator is given below.  In this 
equation, the motion of the manipulator in presented in terms of ( )txy , . 
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with the corresponding boundary conditions as 
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and initial conditions as 
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3. Algorithm Development 
 
The FD approach can be utilized to obtain a numerical method of solving Partial Differential 
Equations (PDE) by developing a finite-dimensional simulation of a single link flexible 
manipulator system through a discretization, both in time and space (distance) coordinates.   
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Figure 3: Finite difference discretization in time and space variables. 



The algorithm allows the inclusion of distributed actuator and sensor terms in the PDE and 
modification of boundary conditions.  The development of such an algorithm for a system with 
no damping has been previously reported [8]. 
 
The dynamic equation describing the motion of the flexible manipulator can be presented by a 
fourth-order PDE as shown in equation (1).  The FD method is used to solve this equation and to 
develop a suitable simulation environment characterizing the behavior of the system.  To start, a 
set of equivalent difference equations defined by the central finite difference quotients of the FD 
method are obtained by discretizing the PDE (1) along with its associated boundary and initial 
conditions in equations (2) and (3).  As shown in Figure 3, the process involves dividing the 
manipulator into n sections, each of length x∆ , and considering the deflection of each section at 
sample times, t∆ .  In this manner, a solution of the PDE is obtained by generating the central 
difference formulae for the partial derivative terms of the response ( )y x t,  of the manipulator at 
points tj. = t ,x i. =x ∆∆  [8].  The difference equations are provided in equation 4. 
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where, yi j,  represents the response t)(x,y  at  and  or ),( ji txy .  Note that a time-
space discretization is adopted in the evaluation of the response of the manipulator. 
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from equation (4) and simplifying to yield 
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Equation (5) provides the displacement of section i of the manipulator at time step 1+j .  It 
follows from this equation that, to obtain the displacements 1+j1,-ny  and 1+jn,y , displacements of 

x i x= ∆ t j t= ∆



the fictitious points j1,+nj2,+n y , y  and 1-j1,+ny  are required.  These can be obtained using the 
boundary conditions related to the dynamic equation of the flexible manipulator.  Using a 
similar manner, the discrete form of the corresponding boundary conditions can be obtained: 
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3.1 Matrix Formulation 
 
Using matrix notation, equation (5) can be written in a compact form as 

 CFBYAYY ++= −+ 1ji,,1, jiji  (10) 

Where 1, +jiY  is the displacement of grid points ni ,,2,1 =  of the manipulator at time step j+1, 
ji,Y  and 1-, jiY  is the corresponding displacement at time steps j and j-1, respectively.  A and B 

are constant nn × matrices whose entries depend on the flexible manipulator specification and the 
number of sections the manipulator is divided into, C is a constant matrix related to the given 
input torque, and F is an 1×n  matrix related to the time step t∆  and mass per unit length of the 
flexible manipulator; 
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3.2 State-Space Formulation 
 

A state-space formulation of the dynamic equation of the manipulator can be constructed by 
referring to the matrix formulation.  Using the notation for simulation of discrete-time linear 
systems, the dynamic equations of the flexible manipulator can be written as: 
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Note that N represents the number of sections. 
 
4. Simulation 
 

The aim of this project is to develop a cloud environment for simulation of a single link flexible 
manipulator system. 
 

 
 

Figure 4: Implementation block diagram. 
 

 
 

Figure 5: Interaction between the ASP.net and DLL. 

The process involves preparing MATLAB m-files for algorithm implementation and converting 
the m-files to a dynamic link library (DLL) using MATLAB Compiler SDK, ASP.net application 
to visualize the results.  A block diagram showing the process is provided in Figure 4, and 
Figure 5 shows the interaction between the ASP.net and DLL. 



4.1 MATLAB Development 
 
The developed FD algorithm for a single link flexible manipulator system is coded in MATLAB 
as m-files.  A diagram showing the structure of the MATLAB programming is shown in Figure 
6.  All the user defined specifications, like material properties and simulation parameters, are 
provided as inputs in the form of arguments to the MATLAB main function.  This main 
function calls a number of sub-functions at various stages.  The sub-functions are: Simulink 
block coded function, generation of output function, and data scaling function.  MATLAB 
Compiler SDK is used to convert the developed m-files to DLL files. 
 

 
Figure 6: MATLAB program structure. 

 
 
4.2 Microsoft Visual Studio .net Assembly (ASP.net) 
 
MATLAB Compiler SDK is used for converting the MATLAB library to a .net Assembly and 
C# library.  The data are passed directly from MATLAB to a .net framework.  When a client 
interacts with the web page, the requests are passed to the MATLAB (server end) via the 
ASP.net.  MATLAB then performs the calculations as requested and passes the output to the 
ASP.net.  The ASP.net in turn plots the output graphs for the remote users within the webpage.  
Figure 7 illustrates the implementation process. 
 
The first and foremost step in a .net framework is to reference the DLL file from the 
redistribution folder, which is created by the MATLAB Compiler SDK in the previous step.  
The next important step is to add another reference called MW Array that is required by Visual 
Studio to interpret the output data from MATLAB. 



 
 

Figure 7: Microsoft Visual Studio implementation. 
 

 
 

Figure 8: Home page for the simulation environment. 
 
5. Results 
 
This section demonstrates the simulation results in the form of web pages, images, and graphs 
that remote users will visualize.  The strategy described in this paper is used for implementing 
the FD and finite element (FE) simulation algorithms as well as the open loop response behavior 
of a single link flexible manipulator system with various loading conditions.  Figure 8 shows 
the home page for the environment in which options are provided for various simulation choices.  
The choices are ‘Finite Difference Simulation’, Finite Element Simulation’, and ‘Open Loop 
Control. 
 

In this section, only the FD simulation outcomes are provided.  Figure 9 shows the landing page 
for FD simulation.  In this interactive page, users provide a desired system specification in 
terms of physical size, material properties, excitation input type, and desired output as well as a 
few timing inputs. 



 

 
 

Figure 9: User input for system configuration page. 
 
There are three input types and seven output choices (Figure 10 and Figure 11).  Once finished 
with entering all of the choice options, the user clicks on the ‘Results’ button.  This in turn 
passes the provided data to the server over the web.  The MATLAB script on the server 
processes these and passes the output results to the website for user visualization. 

 
 

Figure 10: Input options. 

 
 

Figure 11: Output choices. 
 

 
Figure 12: Hub angle without payload. 



The simulation results are presented for the hub angle, hub velocity, end-point displacement, and 
end-point velocity, both in the time and frequency domains.  Figures 12 through 15 show the 
output graphs without any payload, while Figures 16 through 19 show the output graphs with a 
20gm of payload. 

 
Figure 13: Hub velocity without payload. 

 

 
Figure 14: End-point displacement without payload. 

 

 
Figure 15: End-point velocity without payload. 



 
Figure 16: Hub angle with payload (20g). 

 

 
Figure 17: Hub velocity with payload (20g). 

 

 
Figure 18: End-point displacement with payload (20g). 

 



 
 

Figure 19: End-point velocity with payload (20g). 
 
6. Conclusions 
 
This paper illustrates the development of a cloud based simulation environment for a single link 
flexible manipulator system that can be used for educational and research purposes.  The first 
part of the paper provides the mathematical description of the system and then uses a FD 
approach for simulation algorithm development.  MATLAB is used for core simulation work, 
while MATLAB Compiler SDK is used for producing DLL files for interacting with the 
ASP.net.  Finally the ASP.net is used for interaction and visualization over the web.  Main 
thrust of this paper is to present only the technical aspect of the development, rather than a 
classroom integration.  However, the environment can easily be utilized for classroom use, 
homework, as well as a support tool for laboratory experiments. 
Acknowledgements: The authors would like to thank the NSF for its support for the reported 
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