
Paper ID #36918

Cloud technologies for scalable engagement and learning in
flipped classrooms
Sotiria Koloutsou-vakakis (Dr.)

Sotiria Koloutsou-Vakakis (Ph.D.) is a Senior Lecturer and Research Scientist in Civil and Environmental Engineering, at
the University of Illinois at Urbana-Champaign. She holds degrees in Civil-Surveying Engineering, Geography and
Environmental Engineering. Her most recent research is about gaseous emissions of reactive nitrogen from fertilized
fields into the atmosphere and impacts on air quality and climate change. She teaches undergraduate and graduate courses
on Air Quality, Science and Environmental Policy, and Engineering Risk and Uncertainty and is active with K-12
outreach. She has strong interest in engineering education. She develops materials and researches best practical classroom
approaches for integrating computation and computational thinking in introductory CEE courses; and for promoting
teamwork, communication and problem-solving in context, throughout the CEE curriculum.

Christopher Tessum

Eleftheria Kontou

Hadi Meidani

Hadi Meidani is an Associate Professor in the Department of Civil and Environmental Engineering at the University of
Illinois at Urbana-Champaign. He obtained his Ph.D. in Civil Engineering and his M.S. in Electrical Engineering from the
University of Southern California (USC) in 2012 and also a M.S. in Structural Engineering from USC. After his Ph.D. he
was a postdoctoral research associate in the Department of Aerospace and Mechanical Engineering at USC in (2012-
2013) and in the Scientific Computing and Imaging Institute at the University of Utah (2013-2014). He is the recipient of
the NSF CAREER Award to study fast computational models for energy-transportation systems. His research interests are
uncertainty quantification, scientific machine learning, computational modeling of civil infrastructure systems, and
resilient infrastructures.

Lei Zhao

Dr. Lei Zhao is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of
Illinois at Urbana-Champaign (UIUC). His research concerns the physical and engineering processes in the Atmospheric
Boundary Layer where most human activities and environmental systems are concentrated, with a particular focus on built
surfaces and urban environments. He combines theory, numerical modeling, remote sensing and in situ observations, and
cutting-edge machine learning methods to study environmental fluid mechanics and land-atmosphere dynamics that relate
to urban environments, climatology and hydrology, climate change, climate impacts and adaptation. He received his Ph.D.
(2015) in Atmospheric and Environmental Science from School of the Environment at Yale University. Before joining at
UIUC, Dr. Zhao was a postdoctoral research fellow in the Program in Science, Technology and Environmental Policy
(STEP) at Princeton University. Dr. Zhao obtained his B.S. degree (2009) in Physics and Atmospheric Physics from
Nanjing University in China.

© American Society for Engineering Education, 2022
Powered by www.slayte.com

Cloud technologies for scalable engagement and learning in flipped
classrooms

Sotiria Koloutsou-Vakakis, Hadi Meidani, Eleftheria Kontou, Lei Zhao, Christopher W. Tessum
Department of Civil and Environmental Engineering, University of Illinois at Urbana-

Champaign, 205 N. Mathews, Urbana, IL 61801, sotiriak@illinois.edu

1. Introduction

Engineers of the future need be equipped with the culture and skills for a fast-changing and
uncertain professional, socioeconomic and natural global environment. This need is fueled by
rapid changes in science and technology and by pressures on societies to respond to emerging
environmental crises and situations such as the recent pandemic. In the engineering classrooms,
this translates into very high expectations on students and educators alike. Technology in the
classroom has been used to help attain learning objectives, equip students with practical skills
valued by employers, and link communities of learners. However, this diversity of learning and
communication tools and information-rich learning environments can lead to cognitive overload.
Cognitive load refers to the bandwidth of our working memory. Cognitive overload occurs when
working memory demands exceed working memory capacity, causing learning and performance
to suffer [1], [2]. Two types of cognitive load are mentioned in the literature intrinsic and
extraneous [3]. Intrinsic cognitive load mostly affects students who are new to a subject and they
have not yet constructed networks to connect ideas, theories, facts and figures. Extraneous
cognitive load refers to factors not necessary for learning that can be altered by instructional
interventions [3]. For example, extraneous cognitive overload can be caused by factors that make
processing of information difficult, such as unclear course expectations, confusing LMS
(learning management system) interface, poorly explained assignments, continuous switching of
ICT (information and communication technology) tools, long pre-recorded lectures, inadequate
online teaching methods, unnecessary distractions (e.g., provision of superfluous information or
diverting attention to check something online) [4].

Combating extraneous cognitive overload in courses that use computational tools (on physical or
cloud platforms) is connected to usability of these tools. With reference to software systems, the
term ‘usability’ has been broadly used to include execution time, performance, user satisfaction
and ease of learning [5]. While older literature focused on software attributes, recent literature
includes student and teacher user interaction, perceived usefulness and satisfaction. For example,
in [6] six factors are identified that affect e-learning usability: information quality, system
navigation, system learnability, visual design, instructional assessment, and system interactivity.

In this presentation, we demonstrate the online environment we use in two second year civil and
environmental engineering (CEE) courses that have enabled teaching computational thinking in
the CEE context. We focus on an example approach for reducing extraneous cognitive overload:
switching from the default in-class code developing and testing environment to one enabled
recently in the learning platform that allows easy access to Jupyter workspaces [7] (JW). This
presentation provides an example of technologies that enable teaching and learning of
computation thinking regardless of class size. A demonstration class has been created on the ICT

learning platform for readers who wish to have a hands-on experience with the tools we describe
(see Appendix).

2. Background and overview of tools and pedagogies we use

Already before the pandemic, our departmental curriculum committee had been assembled as the
primary community of practice (COP) to launch a department-wide curriculum innovation effort.
Two second year CEE courses became the foundation for this effort. Curriculum innovation was
launched with three major focal points: computational thinking, communication, and experiential
learning. To make the changes scalable and sustainable, we created course-specific COPs among
course instructors. Materials are developed as a result of coordinated efforts among these course
specific communities of practice and the courses are taught the same way, no matter who teaches
the course each semester, with continuously evolving materials and pedagogies across semesters.
We also adopted a student-centered teaching model [8].

We have previously presented our approach for integrating computational thinking with the
fundamental content matter of our courses and for shifting to student-centered learning, along
with cognitive and affective learning outcomes, after first implementation [9]. The two courses
we initially redesigned cover introductions to (1) systems engineering and economics and (2)
engineering risk and uncertainty. Both classes are offered every Fall and Spring semester. Python
3 is used in the first course and R in the second. We chose these two coding languages, because
they are currently prevalent but also considering coding language use in subsequent courses, as
curriculum innovation efforts propagate to upper-level courses. We also intended to
communicate to students that 1) computing literacy is more than the specific language used; 2)
different tools are better suited for different applications; 3) different tools can work together,
taking advantage of each tool’s strengths for a given application; 4) computer languages keep
evolving, requiring everyone to adopt new tools using essential common background knowledge.

Developing the learning online environments for the two courses is an evolving iterative process.
A major guiding factor was the negligible coding experience of the vast majority of our
incoming students. Therefore, user interface friendliness and simplicity (broadly included in the
tool usability concept) are very important. The generalized steps we follow in choosing tools and
teaching approaches are: 1) identification and articulation of learning objectives to prepare
students for a rapidly changing physical, social and technological environment; 2) creation of an
instructor community of practice for the specification of a strategic sustainable frame for action;
3) consideration of the diversity of student backgrounds in our early (first and second year)
courses; 4) research of pedagogies to enhance student engagement; 5) research of campus
available learning tools to enable our teaching goals and learning objectives; 6) gradual
development of educational materials; 7) adoption of a continuous learning, iteration,
improvement process, as we keep learning from earlier implementations, using student survey
feedback, student assessment results and our own classroom observations.

Choice of LMS and ICT tools is important to support the sustainability of changes and to provide
an appropriate environment for computational thinking practice and learning. Specifically, our
choice criteria for LMS and ICT included: 1) ability to support teaching of computational
thinking and practice; 2) cost for use; 3) use by other courses our students take in earlier

semesters or simultaneously. The latter is important for reducing student stress and confusion
induced by use of multiple learning environments for different courses.

Currently, we use Canvas [10] as a repository for course resource materials. Modules are
organized by week, consistent with the syllabus, and contain study materials and links to
assignments with reminders of due dates/times. We use Prairie Learn (PL) [11], an open source
learning environment, to host pre-lecture videos, in-class worksheets, homework assignments
and not-for grade practice homework problems. PL supports automatic and manual grading for a
variety of problem types: multiple-choice, numeric, coding and symbolic. PL has been a major
enabling factor of our efforts to introduce and create an accepting culture for computational
thinking, among CEE students. It was also the essential enabling factor for the online shift of
operations due to the COVID-19 pandemic.

In our student-centered learning approach, students watch short pre-lecture videos and answer
checkpoint questions. Then, in class, after an overview of the key concepts of the day, students
work on problem solving, for understanding the new material at a deeper level. In class-
worksheets are made available on PL and as printable documents. Answers are submitted on PL
for grading. In-class worksheets are formative assessments. Unlimited multiple attempts are
allowed, and students get full credit as long as, they complete a certain percentage of the
problems correctly. Solved worksheet problems become available on Canvas as study material,
soon after class. Summative assignments comprise of weekly homeworks, exams and an
assigned team project. Homework and exam problems are randomized to minimize cheating
[12].

Here, we focus on the in-class student problem solving period. Our in-class worksheet approach
is inspired by that described in [13] about self-regulated learning, even though we refer to a
single class session with short problems rather than bigger projects. English and Kitsantas [13]
distinguish three phases in the classroom environment: problem launch, guided inquiry/solution
creation and problem conclusion that correspond to three student processing phases: forethought,
performance and reflection, respectively.

In our class implementation, in phase 1 (overview), students initiate an action plan for solving
the problems using the tools made available to them. This is after the instructor presents a brief
overview of the concepts students first learned about by watching the pre-lecture videos. The
overview is a reminder and a lead to help students use that early knowledge to solve a problem.
In phase 2 (problem solving), students arrive to a computationally assisted solution through
careful reading of the problem, discussion with their teammates and experimentation that
involves learning iteratively by erring, reasoning about where they erred and why, and finally
correcting and arriving to the solution. At this stage, the instructor and TAs walk around the
room or visit online breakout rooms, to provide prompts and answer questions but not to solve
the problems for the students. In phase 3 (reflection – communication of ‘muddiest point’), the
goal is for students to reflect on the materials and activities of the day about what they learned
and about what remaining questions they have about the key concepts, the solution process or the
tools they have available to help them solve a problem. Answers to muddiest point questions are
posted on Canvas and the most common ones are discussed in the following class.

In our initial implementation, using the default PL tools, we observed that students were
struggling with organizing their laptop workspaces, despite our guidance about how to organize
and manage their laptop screens. The workflow required that students needed to switch windows
multiple times during class between the software on their laptops and the PL web browser
window. A few students were vocal about these difficulties, while others were silently adjusting.
It was apparent to us that even for the students who were accepting the original workflow as a
fact of life, the need to manage multiple software and windows on a single class session was
creating distraction and slowed down the learning process, becoming a cause of extraneous
cognitive overload.

3. Implementation of JWs and preliminary observations

The addition of access to JW from inside PL enabled improved streamlining of in-class
workflow for students. Use of JWs allows students to access their worksheets from a single
browser window using two tabs. Students can complete, test and submit code for autograding
just using these two tabs. In addition, the cloud environment offers independence from the laptop
environment. This is another important consideration because student struggles with laptop
specific issues that arise during class time detract from learning by shifting student attention to
troubleshooting their machines. In the Appendix, we present instructions for interested readers to
access an example and gain a sense of the student experience, while working on an in-class
worksheet using PL. We provide two versions of the example, the ‘original’ one that requires
availability of R/RStudio on one’s laptop to be able to submit and grade answers, and the
‘improved’ workflow using PL JWs, where one needs only a browser to access PL.

Next, we present early observations about student interactivity with the new approach using two
metrics: duration for completing a worksheet and grade upon submission. We use duration as an
indicator of workflow ease and grade as an indicator of learning. In Figure 1, we present these
metrics for three worksheets across four semesters. The new approach was used in semester 4.
Our data do not allow statistical evaluation, yet, but results are in the desired direction. Even
though differences in duration and grade depend on the requirements and difficulty of questions
in each worksheet, observationally, we note a general trend indicating reduced duration and
higher grade, when JWs are used. We also surveyed the students in semester 4 asking the
question “Please, indicate your preference about how you like the Jupyter Workspace questions
we currently add to PL worksheets.” On a scale from 1 (I do not like) to 10 (I like best), 77% of
students gave a rating of 6 or above, with 36% rating with 9 and above.

Figure 1. Comparison of mean duration (a) from beginning of class until worksheet (WS)
submission and grade (b), over four semesters. Worksheets using Jupyter Workspaces were used
in semester 4.

4. Discussion

Introduction of computational thinking and practice in non-Computer Science majors presents
challenges for instructors which include the development of discipline relevant materials and
overcoming student resistance under the false perception that they do not need coding in their
chosen discipline. This is particularly true for the classes that are the first to transition to a new
teaching and learning environment. What we have witnessed is that these initial reactions fade
after a couple of semesters of implementation [9], as student culture and expectations change.
However, it is important to continue staying tuned and responsive to student perceptions and
responses. When online learning platforms are used, ease of access and use are important for
reducing student anxiety and extraneous cognitive load. It takes time to conclusively state the
effectiveness of a given educational improvement effort, especially one where research,
development and implementation occur simultaneously. At this stage, our example of an
intervention aimed to reduce cognitive load appears to have a positive effect on optimizing
student workflow and learning, during class, for CEE students.

From the instructors’ perspective, staying responsive to student perceptions and responses,
requires significant time commitment and increased workload. For example, our transition to
JWs was hardly straightforward, as it first, required re-configuration of the PL R autograder, in
addition to re-creating the PL questions. This seems to be a persistent issue, for teaching with
technology because rapid technological advances reduce the lifetime of materials developed on
learning platforms. This is beyond the scope of this presentation, but it is a challenge for the
user-instructor communities, as well as for the platform developer communities. In addition to
usability, as described in the beginning of the presentation, sustainability of learning platforms
needs become an important consideration, with consideration to the instructor user of the
platforms. Nevertheless, what we have learned from this effort is that use of cloud learning
environments during class offers advantages such as, ease of access, student team collaboration,
and simplification of student workflows. This works well for in-person, online, or hybrid types
of courses and is scalable for all class sizes.

Acknowledgments

The online course PL environments for the two courses have been made possible thanks to the
contributions of many graduate teaching assistants who have coded questions. Specifically, for
this presentation, we acknowledge the contributions of Priyam Mazumbar, who helped create the
Jupyter workspace example and Advai Podduturi who enabled autograding of R Jupyter
workspace cells, building upon the R autograder developed by Dirk Eddelbuettel for PL:
https://github.com/eddelbuettel/pl-r-demos

References

[1] J. Sweller, "Cognitive load during problem solving: Effects on learning" Cognitive

Science, vol. 12, no. 2, p. 29, 1988. https://doi.org/10.1016/0364-0213(88)90023-7.
[2] J. L. Sewell, L. Santhosh, and P. S. O’Sullivan, “How do attending physicians describe

cognitive overload among their workplace learners?” Med Educ. 54: 1129– 1136, 2020.
https://doi.org/10.1111/medu.14289.

[3] J. Eyler, “How Humans Learn: The Science and Stories Behind Effective College
Teaching”. United States, West Virginia University Press, 2018.

[4] V. Iturbe-LaGrave, “Teaching Through a Pandemic: Cognitive Load, Mental Health and
Learning Under Stress” Apr. 2020. [Online]. Available: https://otl.du.edu/teaching-
through-a-pandemic-cognitive-load-mental-health-and-learning-under-stress/ . [Accessed
Dec. 29, 2021].

[5] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability meanings and interpretations
in ISO standards”. Software Quality Journal, vol. 11, pp. 325–338, 2003.

[6] A. Alshehri, M. Rutter, and S. Smith, "Assessing the Relative Importance of an E-
learning system’s Usability Design Characteristics Based on Students' Preferences",
European Journal of Educational Research, vol. 8, no. 3, pp. 839-855, 2019.
https://doi.org/10.12973/eu-jer.8.3.839

[7] T. Kluyver T, B. Ragan-Kelley, P. Fernando, B. Granger, M. Bussonnier, J. Frederic, K.
Kyle , J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila , S. Abdalla, and C. Willing,
“Jupyter Notebooks – a publishing format for reproducible computational workflows,” in
Positioning and Power in Academic Publishing: Players, Agents and Agendas, F.
Loizides, B. Schmidt, Ed. IOS Press, 2016, pp. 87–90.

[8] A. Karabulut-Ilgu, N. Jaramillo Cherrez, and C. T. Jahren, "A systematic review of
research on the flipped learning method in engineering education," British Journal of
Educational Technology, vol. 49, no. 3, p. 13, 2018.

[9] S. Koloutsou-Vakakis, E. Kontou, C. W. Tessum, L. Zhao, and H. Meidani,
“Educational Technology Platforms and Shift in Pedagogical Approach to Support
Computing Integration Into Two Sophomore Civil and Environmental Engineering
Courses”, 2021. Paper presented at 2021 ASEE Virtual Annual Conference Content
Access, Virtual Conference. https://peer.asee.org/37005.

[10] Instructure, “Teaching and Learning. To the Power of Canvas LMS”, 2022.
https://www.instructure.com/canvas. [Accessed Mar. 16, 2022].

[11] M. West, G. L. Herman, and C. B. Zilles, “PL: Mastery-based Online Problem Solving
with Adaptive Scoring and Recommendations Driven by Machine Learning”, 122nd
ASEE Annual Conference and Exposition, Conference Proceedings: Making Value for
Society, 14-17 June 2015. 10.18260/p.24575. 2015.

[12] B. Chen, M. West, and C. Zilles, "How much randomization is needed to deter
collaborative cheating on asynchronous exams?", presented at the Proceedings of the
Fifth Annual ACM Conference on Learning at Scale, 2018.

[13] M. C. English and A. Kitsantas, "Supporting Student Self-Regulated Learning in
Problem- and Project-Based Learning," Interdisciplinary Journal of Problem-Based
Learning, vol. 7, no. 2, 2013.

Appendix. Instructions for accessing the demo course

1. Go to https://www.prairielearn.org/ .
2. Click ‘Log in’.
3. Sign in with a Google or Microsoft account.
4. Once logged in, click on ‘Add or remove courses’.
5. In the course list, find ‘CEE 201/202DM: CEE201/202 demo course, CEE 201-

202 Demo’ and click ‘Add course’. In the popup window confirm the addition.
6. Hit the browser back button to go to the first PL page you landed, after login. You

will see the course listed.
7. Hit the course link and you will then be able to access and explore the demo

assignments we have created.
8. Click Assignments in the top menu to see the example assignments listed and just

follow the instructions.
9. For your convenience with testing, the complete code for the example problems is

available on PL to copy/paste and submit for grading, so that you gain the full
experience of using the platform.

Notes:
We have created two versions of the same assignment, one using the default PL environment and
the other using the Jupyter Workspace (JW) option.

In the default version, users not familiar with R will not be able to produce the graph files. The
graphs can be produced in the R or RStudio [14] environment, be saved in an appropriately
named .pdf file and uploaded to PL, where then they need to be checked by the instructor
manually, after class. This is an inconvenience that is eliminated, when we use JWs. In the JW
version, coping/pasting the code we provide and running each cell sequentially will provide both
numerical and graph output. In JW the graphs are also autogradable through testing for the
values of the variables that are plotted.

