
Paper ID #34831

Collaborative Parsons Problems in a Remote-learning First-year
Engineering Classroom

Brooke Morin, Ohio State University

Brooke Morin is a Senior Lecturer in the College of Engineering at Ohio State University, teaching First-
Year Engineering for Honors classes in the Department of Engineering Education. Brooke earned her
bachelor’s degree and master’s degree in Mechanical Engineering at Ohio State. Her research interests
include implementing and evaluating evidence-based practices in the first-year engineering classroom.

Dr. Krista M. Kecskemety, Ohio State University

Krista Kecskemety is an Assistant Professor of Practice in the Department of Engineering Education at
The Ohio State University. Krista received her B.S. in Aerospace Engineering at The Ohio State Uni-
versity in 2006 and received her M.S. from Ohio State in 2007. In 2012, Krista completed her Ph.D. in
Aerospace Engineering at Ohio State. Her engineering education research interests include investigating
first-year engineering student experiences, faculty experiences, and the connection between the two.

c©American Society for Engineering Education, 2021

Collaborative Parsons Problems in a Remote-Learning First-Year
Engineering Classroom

Introduction

This complete evidence-based practice paper examines the impact of a classroom activity to
teach programming to first-year engineering students. Programming and logic are vital
components of an engineering education. While some may assume programming is only
important in computer science, many engineering disciplines use computer software, which
requires programming and logic. This is why it is common to teach introductory programming
and computation to all engineering disciplines [1]. However, students often struggle to learn
programming and come into the first year of engineering with a wide range of prior
programming experience[2], [3]. The differences can be due to access of computer science
courses at the high school level [4], the level of instruction in these courses, and the self-
selection bias in enrolling in these courses. It has been shown that women and under-represented
minorities are less likely to have taken a high school computer science course [4]. Therefore,
when these students with a wide range of prior experience start a first-year engineering course,
many of them struggle.

One of the explanations for why students struggle in introductory programming classes is the
high cognitive load associated with traditional programming tasks. Cognitive load theory uses an
evolutionary framework to describe how novel information is learned and stored in long term
memory [5]. A given learning task has both intrinsic loads, or the inherent interactivity of the
elements of the information being learned, and extraneous loads, which are introduced primarily
by the choice of instructional technique. These loads (with extraneous load often differentiated
from germane load, which is also due to instructional technique but is beneficial to learning) act
upon a learner’s working memory [6], [7]. When the working memory is overloaded, the ability
of a learner to process and retain information in long term memory is hindered.

Traditional programming instruction tends to create high extraneous cognitive loads [8], [9]. It
often requires students to learn programming syntax and logic simultaneously, which is
particularly challenging for students with a less robust computer science and programming
background, as they do not have existing schema for either of these interacting elements.
However, when students who do have existing schema in long term memory for one or both of
these elements will experience lower cognitive loads in their working memory [5]. Thus,
separating these two components should reduce the cognitive load of the students, allowing them
to focus on developing a single skill at a time in order to build the necessary schemas to
effectively complete traditional programming problems.

One way to implement this separation of syntax and logic is through the use of Parsons
Problems. Parsons Problems are activities or assignments in which computer code is separated
into individual lines or multi-line segments [10]. These segments are then scrambled and are to
be placed in order by the students. These problems have been shown to have similar efficacy in
improving programming skills as writing the programs themselves [11], [12].

Parsons Problems have been implemented into a first-year engineering course that teaches
introductory computer programming through MATLAB and C/++. The problems, first
implemented in Autumn 2019, were designed to be completed in person in the classroom. The
students were provided slips of paper and asked to rearrange them into the correct order.
Previous student feedback provided some areas of improvement for the next iteration including
looking at the length and difficulty of the problems [13]. This process is described in the
following section, Background.

While these challenges were being addressed, an additional challenge presented itself: the virtual
class environment. All activities were forced to shift to a virtual environment due to the class
becoming 100% online in AU 2020. Activities were converted and delivered via custom adaption
of js-parsons, an online Parsons Problem JavaScript library [14]. This still allowed the
collaboration that made the previous iteration unique through the use of Zoom breakout rooms
and screen sharing. This paper discusses the development of the online library as well as
discussing student feedback for this online version of the activity and compare that with the
feedback that was obtained for the in-person activity in previous years. Additionally, we will
highlight the plans for further research into the learning gains and the impact of activity
formatting and mode of adoption has on the success of Parsons Problem and a learning tool.

Background

The first-year engineering program at The Ohio State University first used Parsons Problems in
the first-semester problem solving and programming course in 2019. The decision to incorporate
these activities was based on existing research that demonstrated the benefit in introductory
programming [15]. The honors program was the first to implement these problems in all of their
sections of the course in Autumn 2019, focusing on weekly in-class group activities as the
mechanism for including them in the course. The delivery of the problems included physical
slips of paper, shown in Figure 1, that students manipulated to create the finished program
solution based on a provided prompt. Students worked in groups of 2 to 4 and teaching assistants
were available to help guide the activity. The difficulty of the problems increased as the semester
progressed. The initial problems were simple programs while later problems were more complex.
This increase in complexity occurred for several reasons. First, the logic of more advanced
programming concepts was inherently more challenging to understand. Second, as the
programming concepts became more complex, the length of the problem also increased to
provide the necessary context. Finally, distractors, logically or syntactically incorrect code
segments aimed at correcting common errors, were also incorporated as the semester progressed.

Figure 1: Paper example of the Parsons Problem used during in-person instruction. This problem tested

nested loops logic in MATLAB.

Based on the pilot delivery, questions began to emerge related to what features were most
beneficial to Parsons Problems. Faculty anecdotally noted that students, while generally engaged
in the activity, disengaged when the problems were too complex. This is consistent with the
cognitive load theory in that their working memory was likely becoming overloaded. However,
which specific elements of that complexity were driving the cognitive load increases, as well as a
clear idea of the threshold under which the complexity and interactivity were manageable, was
not identifiable.

To gather student perceptions, an open-ended question was presented to all students to provide
feedback on the Parsons Problems. In Autumn 2019, students indicated positive responses about
the activities in 60% of the responses. At least one student even noted that “[Parsons Problems]
allowed me to focus on the logic and theory behind different concepts without worrying about
syntax”. And while 40% had either a mixed or negative response to the problems, this is not
dissimilar to what is seen with other educators who have implemented Parsons Problems [11].
Furthermore, many of the negative comments related directly to specific attributes of the Parsons
Problems: length and difficulty. For quantitative feedback, students were asked a Likert scale
question about the helpfulness of the distractors. Half of students indicated that the distractors
were very helpful or helpful, 22% were neutral and 28% indicated they were unhelpful or very
unhelpful.

From this data, the instructional staff intended to improve their delivery of the Parsons Problems,
including reducing the length and complexity of several of the more difficult programs. With the
Covid-19 pandemic forcing courses to transition to online delivery, it became clear that an
alternate method of presenting these problems was also necessary. The following section details

the process by which the Parsons Problems were adapted for online delivery, followed by student
responses to this change.

Methods

Online Parsons Problem Development

In Autumn 2020, the virtual nature of the courses necessitated a change to the delivery of the
problems. Prior to identifying the appropriate platform for the new problems, priorities for the
new format were identified.

• Simple environment: The new format had to be simple. The previous implementation
used slips of paper and a page of instructions to implement the activities. The new
environment needed to be similarly streamlined and intuitive.

• Easy manipulation of the code segments: The new format had to allow the students to
move code segments easily. The segments needed to be easy to align, easy to reorder, and
easy to indent.

• Collaborative: One of the features that made the paper strips so effective was that
students could collaborate when solving the puzzles by handing pieces of paper back and
forth and discussing where the strips belonged. The new solution had to replicate this
process as closely as possible.

• Easy to disseminate: The instructional team responsible for the course were already
transitioning courses and laboratories online, along with dealing with the inherent work
overhead of an online course. The solution could not require an instructor to create
duplicate documents, copy and paste code for multiple teams, or other work-intensive
operations.

• Self-checking: In the in-person implementation, the instructional team (one faculty
member and multiple undergraduate teaching assistants) would rotate around the
classroom, helping students identify logic errors. In the online classroom, it was much
more difficult to quickly move between groups and assess the students’ solutions. In
order to provide students quick and effective feedback, the tool had to have self-
evaluation features.

Based on these priorities, an in-house adaptation of js-parsons, an online Parsons Problem
JavaScript library [14], was identified as the platform. The problems were hosted on a university
server. A backend was developed using JavaScript with NodeJS and Express that was able to
evaluate the unscrambled MATLAB and C/C++ code segments and return the output to the
screen. Students could then evaluate the output, as they would evaluate the output of a
programming assignment, to see if the code was working properly. If their submission would
return an error, the error text was returned.

Figure 2: Example of a Parsons Problem used in the online environment. Students could drag code

segments between regions, indent, and reorder. A box elsewhere on the screen showed output.

This online implementation, shown in Figure 2, above, used the same types of problems that had
been delivered in person but now for a virtual environment. Students were sent to Zoom breakout
rooms to work on the problems, where they were instructed to have one student screen share the
problem website. The remainder of the students were shown how to use the annotate feature to
indicate where the code segments belonged or to request control of the shared screen in order to
move the segments themselves. Instructions and a general description (Figure 3) were provided
at the top of the webpage.

Figure 3: The students were provided with problem context and instructions for completing the problem.

The problems were similar to the previous year, but changes were made to adjust to the online
platform and respond to students’ previous criticisms. For instance, due to limited development
time, the online platform could not evaluate software that required keyboard input that generated
output files. Therefore, these structures were limited to only the most relevant week, where the
answers had to be manually evaluated, and otherwise replaced with input files and writing to the
screen. Additionally, the practical size of a computer screen provided natural limits to how many
lines the final code could reasonably be. This limited the length, and often the complexity, of the
programs. These changes likely resulted in some of the problems being less difficult than the
previous year’s counterpart.

Survey Instrument

Students were given the following survey questions at the end of the course asking about the
Parsons Problem implementation. In this survey the Parsons Problems are referred to as “Weekly
Activities”, which was the name used for them in the course.

• Did you feel that the Weekly Activities helped you learn how to code? If not, why not?
If so, how? [Open ended text response]

• Briefly describe ways in which the Weekly Activities were approached by different
breakout rooms you were in this semester. Were some approaches more effective than
others? If so, please describe. [Open ended text response]

• Did you ever access the Weekly Activities outside of class time? If so, how many?
[Response Options: No; Yes, just one or two; Yes, some of them; and Yes, most or all of
them]

• Some Weekly Activities included "distractors", or code segments that were incorrect or
unnecessary. Rank the usefulness of these distractors, from very unhelpful (1) to very
helpful (5). - Distractor usefulness

Of the 309 students enrolled in the course, 282 responses were recorded, although some
participants chose not to answer all the questions or provide written responses. This resulted in
different survey questions having different response counts, which will be indicated when the
data are presented. The open-ended response to the first question was coded to indicate a
positive, negative, or mixed response.

Results and Discussion

The survey question asking if the weekly activities were helpful in learning to code was coded to
indicate the positivity of the response. Approximately 57% of the students who responded
(N=270) had a positive response about the activities, with the rest having either a mixed or
negative response. This was similar to the 60% positivity (N=289) found in the previous iteration
in Autumn 2019 with the paper-based activities, though the number of confounding factors that
arose when transitioning to online delivery prevented any concrete statistical claims. In both
cases, a common concern cited by the students was whether completing the activities would help
with writing complete programs. As previously discussed, this has been shown to be true in the
literature, but even when these demonstrative studies are cited in the classroom students struggle
to believe that Parsons Problems have an impact on their learning.

Students also provided feedback as to whether they found distractors helpful. As seen in Figure
4, 60% of students in Autumn 2020 indicated that distractors were very helpful or helpful, 27%
were neutral and 13% indicated they were unhelpful or very unhelpful. Compared to the previous
year, Autumn 2019, they were slightly more positive and less negative about the distractors. It is
not clear what caused the positive shift from the student perspective as the distractors were
similar in the Autumn 2020 semester. Some of the problems ended up being easier than the year
before, which could have contributed to the distractors being slightly more helpful. This would
be consistent with the cognitive load framework, as the students’ existing schemas being more
sufficient to handle the primary sorting task would allow for the addition of distractors without
overwhelming their working memory.

Figure 4: Student responses to helpfulness of distractors in Parsons Problems activities (N=281

for Autumn 2020, N=387 for Autumn 2019)

Figure 5: Student reported use of Parsons Problems outside of class (N=281)

In addition to completing the Parsons Problems during class time, students were encouraged to
practice them out of class. While these problems were intended to be used to help students study
and practice outside of class as well, we can see by Figure 5 that students did not often use these
resources outside of class time. Future work will examine whether these responses compare with
course and exam grades to see if there is any correlation between use or helpfulness and course
grades, as well as whether the lack of adoption of these resources was due to poor advertising,
lack of interest, or another factor.

The other open-ended question asked students about how they used the breakout rooms and
worked with groups to accomplish the Parsons Problems. Through this response we see many
responses indicating that student groups used the breakout rooms in different ways. Some
students indicated that the group members would work independently and then share their
answers with each other, while others indicated that they would work through it together with
one student sharing their screen. Many indicated that when they worked together the activity was
more useful. This was partially a natural outcome of the varied approaches students took to the
online classroom. In a physical space, the instructional team could identify students who were
not collaborating and encourage them to work together. Additionally, some students were highly
interactive in the online breakout rooms while others were either more hesitant to or unable to
participate verbally or with video. This inconsistency of approach also highlights the need for
clearer instructions in the future if these problems are used in a virtual format. Since the
problems were intended to be completed collaboratively rather than independently, the
instructions should be clearer to the students about how to approach the teamwork.

Conclusion and Future Work

From this initial online delivery of collaborative Parsons Problems, we drew several conclusions:
(1) Students had varied experiences with the Parsons Problems. Over the two years, the problems
varied significantly as we tried to accommodate varying programming concepts, adjust to
external constraints, and respond to student and instructor feedback. One consistent observation
reported by the instructors was the idea that the students would “shut down”, or disengage, when
the problem became too overwhelming. This behavior would be consistent with working
memory being overloaded. (2) Though varied, the experiences skewed positive. This feedback
suggested that, especially if we could reduce cognitive overload, students and faculty would be
receptive to continued use of these activities in the classroom. Combined with the documented
success of Parsons Problems in programming instruction, this anticipated adoption supports our
decision to continue to investigate best practices for the problems. (3) In particular, the results
concerning distractors support the proposed influence of cognitive load on Parsons Problem
engagement. When the problems became easier during the second year, our largely novice
student population seemed better equipped to handle the additional interacting elements that the
use of distractors presents.

These results all support the desire to further investigate and optimize Parsons Problems, whether
presented online or in person, through a cognitive load framework. Introductory programming
instruction is an area where cognitive load is of particular concern [8], [9]. The intrinsic load of a
programming course is inherently high, as programming syntax and logic exhibit high

interactivity, with syntax alone consisting of many interactive elements [16]. Extrinsic loads may
be high as well, as varied programming backgrounds render information redundant for some
learners and novel for others [5]. Previous authors have presented strategies for reducing
cognitive load in programming courses [8], [16], [17] but these strategies often involve changing
programming environment, using different languages, or other large-scale changes that may be
burdensome on instructors with limited resources. Parsons problems are proposed to reduce
cognitive load in several ways: (1) by already containing the correct syntax, they isolate the
semantic component of programming from the syntactic component, mitigating intrinsic load; (2)
the code segments are miniature worked examples, which have been shown to be effective, low-
cognitive-load instructional methods, with the completed block being a larger worked example;
and (3) the interface can be simple without the redundant information or distracting elements of a
development environment [15]. They have been shown to be highly effective in providing
programming instruction, at least comparable to traditional code-writing activities [11], [12]. By
using cognitive load as a framework to examine different implementations of Parsons Problems
we posit that we can identify best-practices for Parsons Problems reducing cognitive load and
increasing learning gains.

By developing Parsons Problems that address the challenges novice programmers often
face, we would contribute to closing the gap in instruction provided by under-resourced schools
in order to encourage more equitable access to early programming experience. Particularly with
paper-based activities, schools would be able to provide the groundwork for their students to
build the schemas to accommodate the complex process of writing programs from scratch using
low-cost materials. Additionally, if we can identify the factors that will cause cognitive loads to
decrease when completing the activities, this will provide an opportunity for novice
programmers to build new schemas. Together, these efforts will help disrupt two points at which
educational institutions often fail to provide minoritized and low-income students with equitable
access to programming education.

Acknowledgements

The authors would like to acknowledge Sean Messerly for his work in adapting, developing, and
maintaining the online platform through which the Parsons Problems were offered to students.

References

[1] B. W. Char and T. T. Hewett, “A first year common course on computational problem

solving and programming,” ASEE Annu. Conf. Expo. Conf. Proc., 2014.
[2] R. Bualuan, “Teaching computer programming skills to first-year engineering students

using fun animation in Matlab,” ASEE Annu. Conf. Expo. Conf. Proc., 2006.
[3] D. Ronan and D. Cenk Erdil, “Impact on computing attitudes and career intentions in a

rotation-based survey course,” ASEE Annu. Conf. Expo. Conf. Proc., vol. 2020-June,
2020.

[4] Code.org, CSTA, and ECEP Alliance, “2020 State of Computer Science Education:
Illuminating Disparities,” 2020.

[5] J. Sweller, “Cognitive load theory.,” in The psychology of learning and motivation:

Cognition in education, Vol. 55, San Diego, CA, US: Elsevier Academic Press, 2011, pp.
37–76.

[6] F. Paas, J. E. Tuovinen, H. Tabbers, and P. W. M. Van Gerven, “Cognitive Load
Measurement as a Means to Advance Cognitive Load Theory,” Educ. Psychol., vol. 38,
no. 1, pp. 63–71, Mar. 2003.

[7] J. Leppink, F. Paas, C. P. M. Van der Vleuten, T. Van Gog, and J. J. G. Van Merriënboer,
“Development of an instrument for measuring different types of cognitive load,” Behav.
Res. Methods, vol. 45, no. 4, pp. 1058–1072, 2013.

[8] S.-S. Abdul-Rahman and B. du Boulay, “Learning programming via worked-examples:
Relation of learning styles to cognitive load,” Comput. Human Behav., vol. 30, pp. 286–
298, 2014.

[9] B. B. Morrison, B. Dorn, and M. Guzdial, “Measuring Cognitive Load in Introductory CS:
Adaptation of an Instrument,” in Proceedings of the Tenth Annual Conference on
International Computing Education Research, 2014, pp. 131–138.

[10] D. Parsons and P. Haden, “Parson’s Programming Puzzles: A Fun and Effective Learning
Tool for First Programming Courses,” in Proceedings of the 8th Australasian Conference
on Computing Education - Volume 52, 2006, pp. 157–163.

[11] P. Denny, A. Luxton-Reilly, and B. Simon, “Evaluating a New Exam Question: Parsons
Problems,” in Proceedings of the Fourth International Workshop on Computing
Education Research, 2008, pp. 113–124.

[12] B. J. Ericson, J. D. Foley, and J. Rick, “Evaluating the Efficiency and Effectiveness of
Adaptive Parsons Problems,” in Proceedings of the 2018 ACM Conference on
International Computing Education Research, 2018, pp. 60–68.

[13] B. C. Morin, K. M. Kecskemety, K. A. Harper, and P. A. Clingan, “Work in Progress:
Parsons Problems as a Tool in the First-Year Engineering Classroom.” ASEE
Conferences, Virtual On line, 2020.

[14] V. Karavirta, P. Ihantola, J. Helminen, and M. Hewner, “js-parsons - a JavaScript library
for Parsons Problems.” 2018.

[15] B. J. Ericson, L. E. Margulieux, and J. Rick, “Solving Parsons Problems versus Fixing and
Writing Code,” in Proceedings of the 17th Koli Calling International Conference on
Computing Education Research, 2017, pp. 20–29.

[16] J. Stachel, D. Marghitu, T. Ben Brahim, R. Sims, L. Reynolds, and V. Czelusniak,
“Managing Cognitive Load in Introductory Programming Courses: A Cognitive Aware
Scaffolding Tool,” J. Integr. Des. Process Sci., vol. 17, pp. 37–54, 2013.

[17] J. Moons and C. De Backer, “The design and pilot evaluation of an interactive learning
environment for introductory programming influenced by cognitive load theory and
constructivism,” Comput. Educ., vol. 60, no. 1, pp. 368–384, 2013.

	Collaborative Parsons Problems in a Remote-Learning First-Year Engineering Classroom
	Introduction
	Background

	Methods
	Online Parsons Problem Development
	Survey Instrument

	Students were given the following survey questions at the end of the course asking about the Parsons Problem implementation. In this survey the Parsons Problems are referred to as “Weekly Activities”, which was the name used for them in the course.
	Results and Discussion
	Conclusion and Future Work
	References

