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Abstract

           Nuclear Engineering Departments were created at most engineering colleges and 
universities during the 1950s and 1960s. These schools typically procured a research or 
test reactor which became the centerpiece of the department. It had dual use for research 
and academic instruction. The author was the Supervisor and Instructor at such a critical 
facility at which a Nuclear Engineering Laboratory Course was based.

          The basic reactor experiments that were performed were quite similar to what the 
pioneers Enrico Fermi, Leo Szilard, Eugene Wigner and others performed in Chicago in 
1942 and subsequently at the plutonium producing reactor in the state of Washington. 
These experiments remain similar to those done at the electric utility reactors and by the 
nuclear navy at times of refueling and startup.

         The experiments include 1) confirming the ability to measure neutrons and 
calibrating the instrument channels by testing and calibrating to assure that neutrons and 
only neutrons are measured, 2) starting with an empty core and then loading fuel and 
monitoring neutron multiplication as a function of fuel loading with rods in and out, 3) 
measurement of reactivity vs rod position once the fuel is fully loaded, 4) measurement of 
reactivity vs temperature to assure hands off stability, 5) measurement of reactivity vs void 
at various core locations, 6) measurements  of reactivity vs boron and 7) mapping the flux 
for determining power distribution in the reactor.

      Unfortunately, many nuclear engineering departments have been eliminated or merged 
with other departments. Most instructional reactors have been shut down. Furthermore 
there have been no nuclear engineering text books written in recent years.

      However, many graduate students have nuclear industry related employment and 
opportunities and remain interested in having a nuclear engineering course as part of their 
program. The challenge is how to effectively structure such a course. Some students may 
have extensive nuclear industry experience and others with minimal prior knowledge.

       The author has developed such a course that combines instruction from an out of 
print text book and simulated reactor experiments to provide a context for the text book 
and lecture material. The author will describe this course along with student comments 
that have been consistently favorable.
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Introduction1.

         Nuclear Engineering and Technology at Union College is a masters level course in 
the Mechanical Engineering Department. There continues to a strong interest in this 
course. The average enrollment has been consistent at about 25 students each year for the 
last fifteen years. Most are part time students who are employed as engineers in local 
nuclear or power related industries. Some are high performing undergraduate students.

        The challenges in presenting this course result from the nonexistence of an 
appropriate text book, no nuclear related laboratory equipment, and the fact that some 
students may have 20 years of nuclear experience or be nuclear training instructors, while 
other students have virtually no prior knowledge of nuclear principles and practice.

         However, the instructor has the benefit of forty years of nuclear experience with the 
naval reactors program, commercial nuclear power plants and as a supervisor of a 
university research and teaching reactor. He has also directed and taught a two week 
program of reactor based experiments on this reactor. This program of ten experiments 
has been highly effective in providing non nuclear engineers with a fundamental 
understanding of nuclear theory and technology.

       Thus the author decided to develop the Nuclear Reactor and Technology course 
around a virtual reactor. The students pretend to do a set of reactor based experiments. 
The experiments include a) neutron measurement, b) loading fuel to the critical condition, 
c) control rod calibration, d) reactivity vs temperature, e) reactivity vs boron, f) reactivity 
vs void and g) spatial power mapping.

       It is noted that these are the experiments that were devised by Enrico Fermi and Leo 
Szilard as part of their December, 1942 demonstration of a nuclear chain reaction. They 
are repeated to confirm satisfactory performance at the time of the initial fuel loading and 
the refueling for any power plant.  

Experiments2.

        These experiments also demonstrate nuclear principles at the fundamental and 
operational level. Students write a lab report for each experiment comprised of theory, 
measured data, analysis, results and discussion. This paper section will further describe the 
experiments and demonstrated principles and practices.

Neutron Measurementa.

       Fundamental to nuclear control and safety is the monitoring a reactor is to measure 
the rate of fission which corresponds to heat generation and power. Options include 
measurement of heat by calorimetric or measurement of the resulting radiation products of 
alpha, beta, gamma or neutrons. The pros and cons of each method is described. It is                        
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shown that neutron measurement is the best option, but the problem is that neutrons are 
not ionizing radiation and thus do not produce an electrical signal.

       The technique of using neutrons to produce an ionizing transmutation of boron in a 
BF3 tube is described, and then the design of the corresponding circuit to measure events. 
The object is to measure neutron events and only neutron events. Adjustments are made in 
the BF3 voltage and discriminator to establish the settings at which neutrons and only 
neutrons are measured.

Fuel Loading by Subcritical Multiplicationb.

         A subcritical reactor is an amplifier of external source neutrons. The amplification 
factor is 1/(1-keff). The keff is a function of the neutron non leakage and this a function of 
the amount of fuel.

         A reactor core map is provided along with an external source and neutron detectors. 
Measured neutron rate is measured as a function of the amount of fuel loaded. From these 
measurements the value of keff is calculated and the critical mass is predicted at each step 
of the fuel loading process.

Control Rod Calibrationc.

          An operational reactor must be subcritical with the rods inserted and supercritical 
with the control rods fully withdrawn, and thus exactly critical at an intermediate rod 
position. The purpose of this experiment is to determine the value of keff vs rod height 
and thus the differential and integral control rod worth.

        The evaluation of rod worth is obtained from processing neutron measurements as 
from rods on bottom to fully withdrawn. The neutron data is then processed to rod worth 
via the Wicks reactor equation (Reference 1). This differential equation is developed from 
first principles and then solved for the special conditions of subcritical multiplication, 
supercritical period and scram response.

      The one delayed neutron group and single node differential equation is developed from 
a neutron balance equation and a delayed neutron precursor equation. The neutron 
multiplication factor, keff, is converted to a diffference from critical and then normalized 
to the fraction of delayed neutrons, B. The resulting is rho in $ is shown in equation 1. 
Thus, rho equals 1 $ is the prompt critical condition, which should never be approached.

         Rho($)= (Keff-1)/B                           ( 1 )

      The resulting Wicks reactor differential equation that relates neutron population, n(t), 
reactivity, rho(t), external neutron source strength in neutrons per second, s(t), the decay
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rate of delay neutron precursor atoms, r(1/sec) and neutron life time, L(sec), is presented 
in equation 2.

        (dn/dt)*(1-rho(t))= r*n(t)*rho(t)+ n(t)*(drho/dt)+L*(r*s(t)+ ds/dt)/B     (2)
  
         This equation is solve for a variety of conditions representing subcritical 
multiplication, M, which is the ratio of total neutrons to source neutrons per (equation 3), 
reactivity as a function of the supercritical steady state period, T(sec), where period is the 
time for neutrons to increase by a factor of e per (equation 4) and scram response which is 
the immediate neutron response to a step change in reactivity per (equation 5).

M= 1/(1-keff)= -1/(B*rho)       (subcritical  multiplication)                    (3)

rho=1/(1+r*T)                         (supercritical with constant  rho)            (4)

n(+)/n(-)= (1- rho(+))/(1-rho(-))  (step neutron response to step change in reactivity) (5)                                                            

        A scram represents a discontinuous function in time. The rho(-) and rho(+) in 
equation 5 are the reactivity values immediately before and immediately after the step 
change in reactivity. The n(-) and n(+) are the neutron populations immediately before and 
after.
                    

Reactivity vs Temperatured.

        Any practical reactor must be self regulated by some internal feedback mechanism. 
Small to moderate size reactors may be regulated by a negative moderator temperature 
coefficient. When the water temperature increases the neutron diffusion lengths increase 
and thus there is more leakage from the reactor and corresponding decrease of the keff, 
the neutron multiplication factor. Larger and low enriched reactors self regulate by means 
of the Doppler effect, which results from resonance broadening of the cature cross section 
in U238.

            The reactivity vs temperature experiment is performed by sustaining the reactor at 
a low power critical condition as the water is heated by adjusting the control rod position. 
The differential rod worth functions from the prior experience is used to convert these 
measurements to a temperature coefficient. This is defined as the change of keff vs change 
of temperature. The subject reactor has a positive temperature reactor which is unstable at 
low temperatures. The coefficient becomes negative at higher moderator temperatures. 
The reactor is stable and thus self regulating in this range.

 e) Reactivity vs Boron (r)

        The Boron10 isotope has a high neutron capture cross section. Thus it is used to 
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suppress neutron multiplication via control rods or chemical shim in large pressurized 
water reactors. The sensitivity of keff to Boron10 depends upon both amount and 
location. The effect is nominally proportional to the product of the neutron flux shape 
function and the importance function, which is also nominally proportional to neutron 
shape.  Thus, the effect of Boron10 is nominally proportional to the neutron flux squared.

     A small sample of Boron10 that looks like electrical tape is placed on a stringer at 
various points in the reactor. The critical control rod height is compared with the reference 
with no Boron10. The reactivity effect of Boron10 vs vertical location in the reactor is 
found to correspond to the differential control rod worth vs height. Students are asked to 
explain this correspondence.

f) Reactivity vs Void

      Water is a neutron moderator. The water increases Keff by slowing the 2 Mev 
neutrons from fission down to thermal equilibrium of about .05 ev at operating 
temperature. Keff is increased because of larger atomic cross sections and less leakage. 
However, water also captures neutrons. Thus some water is good, but more is bad for 
keff. Optimal moderation or fuel to water ratio is the amount of water that maximizes keff.

     A stable or self regulating reactor should be under moderated. Thus, an upward 
perturbation of power raises the temperature of the water which either expands as a liquid 
or undergoes local boiling which decreased keff and thus stabilizes power.

      If a critical reactor is over moderated the increase in power will increase keff and the 
reactor can rapidly reach and exceed the prompt critical condition. The 1986 accident at 
Chernobyl started at a low power level, which corresponded to a positive void coefficient.

      Local void effects upon keff can be calculated with only limited confidence. Thus, 
confirming experiments are important.  The experiment is performed by placing increasing 
amounts of  a water displacing material such as styrofoam at various locations and 
converting the differences in critical rod height to a void effect.

       The instructional reactor at room temperature is found to have a small positive void 
coefficient at the center. Void always has a stabilizing negative effect on the boundary, 
which can be explained because the increased neutron leakage from the core is more 
important.

Spatial Flux and Power Shapeg)

         Nuclear reactors are commercially viable because of the engineer’s ability to design 
small diameter fuel rods and with nucleate boiling enhanced heat transfer from the rod to 
the cooling water. Power densities of 70 kw thermal per liter of volume are achieved.
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        A chain is as strong as the weakest link. Similarly, the total power that can be 
produced by a reactor is limited by the point that is closest to burnout, which happens if 
the enhanced heat transfer mechanism of nucleate boiling is replaced by bulk boiling. The 
Departure from Nucleate Boiling Ratio (DNBR) represents the thermal hydraulic safety 
factor of a reactor.

       The thermal hydraulics engineer would prefer a reactor with a uniform heat 
generation rate throughout. However, any finite size reactor has a power shape nominally 
like a cosine function with maximum power at the center and low at the boundaries. An 
accurate knowledge of this shape is important. Experiments supplement the calculations.

       The flux shape experiment is performed by placing small samples of an element such 
as gold. Neutrons are captured and unstable isotopes are produced. The reactor is 
operated with such samples installed at various locations. They are then removed. The 
decay rate is measured, and correlated with the amount of flux received, which is then 
processed to power level at each core location.

Conclusions3.

          Student comments and evaluations have been consistently favorable over fifteen 
years of teaching a Nuclear Engineering and Technology course in this manner which 
balances lectures with the previously described experiments and lab reports. Students with 
minimal prior nuclear experience and others with extensive experience are comparable in 
terms of performance and benefit. The experiments provide the inexperienced with a 
context. The experienced student attains enhanced insight and understanding.

        The structure and content of the course rely heavily upon four decades of nuclear 
related experience by the instructor in naval, commercial and university reactors. The 
future challenge for instructors will be teaching such a course without updated text books 
and without the benefit of experience with educational, test or research reactors.
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