
AC 2008-1377: COMPUTER AIDED INSTRUCTION AS A VEHICLE FOR
PROBLEM SOLVING: SCRATCH BOARDS IN THE MIDDLE YEARS
CLASSROOM

Quincy Brown, Drexel University
Quincy Brown is a Ph. D. student in the Computer Science Department at Drexel University. Her
research interest is understanding how technology can be used to improve K-12 mathematics
education. She is interested in developing applications for classroom use that factor the
computational resource limitations of urban public schools. Her future research will investigate
methods for computer scientists to collaborate with educators to improve K-12 as well as
computer science education.

William Mongan, Drexel University
Bill Mongan is a Ph.D. student at Drexel University in the Department of Computer Science.
Concurrently, Bill is pursuing an MS in Science of Instruction in the School of Education at
Drexel, with a concentration in Secondary Mathematics and Computer Science in Pennsylvania.
His interests include educational outreach and for exposing the K-12 environment to computer
science as an application of science, technology, math and engineering (STEM) education. Prior
to studying at Drexel, Bill worked for the Upper Darby School District, working with students on
both an educational and volunteer basis in the AP Computer Science program from 2002-2004.
He has served on the UDSD School Board Technology and Grant committee in 2001, and
interviewed for a vacant UDSD School Board seat in 2000.

Dara Kusic, Drexel University
Dara Kusic is a Ph.D. candidate in the Electrical and Computer Engineering Department at
Drexel University with a research focus on the development of self-managing computing
systems. She holds a Masters and Bachelors degree in Computer Engineering from the University
of Pittsburgh and a Bachelors degree from the University of Pennsylvania in Urban Studies. Dara
is a 2006-2008 Fellow of the National Science Foundation in the GK-12 program, working to
enliven math and science study for West Philadelphia middle school students through the vehicle
of engineering.

Elaine Garbarine, Drexel University

Eli Fromm, Drexel University
Eli Fromm is the Roy A. Brothers University Professor, professor of Electrical and Computer
Engineering and director of the Center for Educational Research in the College of Engineering of
Drexel University, Philadelphia, PA. After his BSEE he was employment with General Electric
and E.I. DuPont. He subsequently pursued graduate studies and then joined Drexel University in
1967. He has served in faculty and academic leadership positions including Vice President for
Educational Research, Vice Provost for Research and Graduate Studies, interim Dean of the
College of Engineering, and interim Head of the Department of Biosciences. He has conducted
extensive bioengineering research and in more recent years has turned his attention to engineering
education research. He is the P.I. of the GK-12 project to which this paper relates. He is the
inaugural recipient of the Bernard Gordon Prize from the National Academy of Engineering as
well as many other honors.

Adam Fontecchio, Drexel University
Adam K. Fontecchio received his B.A. in Physics in 1996, his M. Sc. in physics in 1998, and his
Ph. D. in Physics in 2002, all from Brown University. He is currently an Assistant Professor in
the Department of Electrical and Computer Engineering and an Affiliated Faculty member in the
Department of Materials Engineering at Drexel University. He also serves as the Director of

© American Society for Engineering Education, 2008

P
age 13.319.1

Fabrication for the A. J. Drexel Nanotechnology Institute. Dr. Fontecchio is the recipient of a
NASA New Investigator award, the International Liquid Crystal Society Multimedia Prize, and
the Drexel ECE Outstanding Research Award. He has authored over 35 peer-review publications
on Electro-Optics and Condensed Matter Physics. His current research projects include
developing liquid crystal polymer technology for optical film applications including electro-optic
virtual focusing optics, reflective displays, flexible displays, power generating MEMS arrays, and
photonic crystal structures with tunable defects.

© American Society for Engineering Education, 2008

P
age 13.319.2

Computer Aided Instruction as a Vehicle for
Problem Solving: Scratch Programming Environment in

the Middle Years Classroom

Quincy Brown, William Mongan, Dara Kusic, Elaine Garbarine, Eli Fromm, Adam Fontecchio

College of Engineering

Drexel University

Philadelphia, PA, 19104, USA

qb23,wmm24,emg26,kusic,fromme,af63@drexel.edu

Abstract

Since the 1960’s, Computer Assisted Instruction (CAI) has been promoted as the new standard
for teaching and learning. Schools were provided with computers and internet connections at
an astounding rate in the 1990’s, but there was no correlated increase in student performance.1

Investigation into this problem has revealed that computer technology is simply used to augment
traditional ‘instructionist’ teaching strategies,1,2 and this type of integration does not parallel the
current real-time problem solving domain that is driven by technology.

Therefore, the integration of technology to reinforce science, technology, engineering and
mathematics (STEM) education must not simply augment the existing teaching framework, but
also present open-ended engineering problems that require a combination of problem-solving
intuition and strategies learned in the classroom. The goal of this work, conducted via the NSF
GK-12 program at Drexel University, is to evaluate the integration of computer-aided instruction
and computer programming strategies learned in the classroom as it impacts the open-ended
problem solving skills of grade 5 and 6 students. The NSF GK-12 program at Drexel University
aims to use engineering as a contextual vehicle to augment STEM education, as well as to inspire
students to pursue engineering disciplines.

In this work, we introduce computer-aided instruction using the Scratch3 programming envi-
ronment for children as a context for problem-solving to engage and assess the problem-solving
skills of the students who use them. Reitman defines a problem solver as a person perceiving and
adapting a goal without an immediate means of reaching the goal.4 We utilize the child-friendly
Scratch programming environment on the hypothesis that an unfamiliar problem domain can
be better approached by students who have been taught to deconstruct mathematical concepts
and logical sequences into the simple steps to be understood by a computer. This approach
incorporates microelectronic technology as both the means and the subject of learning transferable
problem solving skills.

Educational research indicates a deficiency in the measurable impact of technology in the
classroom.2 This work measures and evaluates the impact of CAI on student performance by
evaluating the students’ use of problem-solving skills and heuristics.5,6 Students in two fifth and
two sixth grade classes as well as a control group receive a pre-test and post-test asking them to
solve mathematical problems using any approach. After receiving the pre-tests, the non-control

0The authors acknowledge support by NSF grant DGE-0538476

P
age 13.319.3

students participate in a series of Scratch-based activities designed to improve their problem
solving skills. During each lesson with Scratch, students are taught to use a variety of problem
solving skills and strategies. The emphasis is upon learning problem solving strategies and
developing the vocabulary and practice of expressing them during use. Students in the treatment
group show improvement in their problem solving skills at a rate greater than those in the control
group and this improvement constitutes a statistically significant impact of CAI in the classroom.

Key words: K-12, problem solving, mathematics education, technological fluency, STEM
education, computer programming, Scratch

I. Introduction

Attracting and retaining minority students in science, technology, engineering and mathe-
matic (STEM) fields continue to challenge our nation’s university systems. The causes and
consequences of the small numbers of minority students in STEM fields has a self-perpetuating
quality – a small number of minority graduates in STEM fields results in a small number of
those who return to the community to lead the way for the next generation of graduates. This
shortfall is further highlighted by the “digital divide”,7–9 the gap between those who have access
to technology, including the information and proficiencies that accompany it, and those who do
not. Often, the digital divide falls along the lines that separate income levels, ethnic groups and
educational attainment.7 Bridging the digital divide by providing technology education in the
schools has been shown to improve academic performance in K-12 students10 and increases the
number students prepared to embark on STEM careers.

The Pennsylvania Department of Education’s academic standards specifically cite “Technology
Education” as an objective at all K-12 grade levels.11 Included in this set of standards are missives
such as, “apply basic computer operations and concepts,” with minimal guidance as to how to
design and implement lesson plans to advance the student’s technical proficiency. While this
openness enables freedom within curriculum development, it can also mean that technology
programs are underdeveloped, understaffed and without the technical support needed to sustain
such programs on a daily basis.

To address these challenges, educational Fellows of the National Science Foundation’s (NSF)
GK12 program have introduced a pilot program of computer-aided instruction (CAI) at two site-
specific public schools having predominantly minority students. The NSF Fellows are Drexel
University Ph.D. students in several computing-related disciplines who have utilized the child-
friendly Scratch programming environment3 to introduce fifth and sixth grade students at two
schools in the Philadelphia School District to basic concepts of computer programming. To
increase the impact of the lessons on the STEM preparedness of the students, the Fellows
have explicitly addressed educational standards in Mathematics in addition to those standards
in Science and Technology. The overall objectives of the Scratch-based CAI initiative at the
schools are to

• develop CAI curricula that specifically address objectives in the state mandated educational
standards; and to

• strengthen the mathematical reasoning skills of the fifth and sixth grade students to utilize
arithmetic operations efficiently and to make quantitative decisions in context; and to

P
age 13.319.4

• improve fifth and sixth grade school students’ attitudes toward and interest in computing
technology, particularly as respects the students’ vantage point as creators, rather than simply
users, of technology; and to

• increase the students’ knowledge of computer hardware and software terminology; and to
• improve the Fellows’ experience in developing CAI curricula that address state standards,

implementing those lesson plans in a classroom setting, and assessing the quantitative impact
of the program.

In this pilot project, for the 2007-2008 school year, students are introduced to many of the
building blocks of computer science and mathematics in higher education. For example, one
script created by the students requires decomposing a gaming objective into a set of simple
instructions (algorithms), introduce data elements for keeping score (variables), and locate various
points on the gaming “stage” (Cartesian coordinates). All of these mathematical concepts are
currently beyond the scope of their fifth and sixth grade mathematics education, but can be easily
introduced a game-type domain that is familiar to them most often in a recreational setting.

In this paper, we describe the development of the Scratch-based initiative, the methodology
used to assess the program, and a quantitative evaluation of the impact upon the students’
mathematical reasoning and problem-solving abilities. The paper is organized as follows. Section
II provides a summary of research related to STEM education and CAI curricula. Section III
describes the participants and context of the study. Section IV discusses our methodology and
Section V discusses test administration and scoring. Section VI describes how Scratch is used as
an instructional tool. Sections VII and VIII present the results of tests and surveys, respectively,
and Section IX addresses the Fellows’ ability to develop lesson plans. Section X concludes the
paper and discusses ongoing research with respect to the program.

II. Related Work

In the midst of continuing low numbers of African-Americans graduating from undergraduate
engineering programs,12 it is critical to prepare students for the rigors of STEM education to
support high retention rates. The number of African-American college students graduating with
engineering baccalaureate degrees dropped from a high of 27,400 students in 2002 to a 10-year
low of 24,300 students in 2005 (National Science Foundation, 2005). The global ranking of U.S.
students in mathematics slips from 11th place in fourth grade to 15th place by the eighth grade
(National Center for Education Statistics, 2003). Because of these statistics, U.S. universities and
the K12 school systems, in order to increase the number of qualified applicants to engineering
programs, have a “crucial role to play” in transforming K12 math and science education,13 and
to further introduce students to the career choices available in STEM fields.

The burden of making connections between mathematics and computer science largely falls
upon the students,14 but some curricula have been designed to more clearly expose this depen-
dency.14,15 Compellingly, test scores in some mathematical disciplines have shown statistically
significant increases when students have been exposed to computer-aided learning and simulation
software.16,17 Researchers at the University of South Carolina report a near-uniform 5% increase
in 5th grade test scores on double-digit division and multiplication after spending two weeks
working with specially-developed mathematics education software.17

P
age 13.319.5

Making the connection between mathematics and daily life has been shown to correlate with
high achievement. Researchers have found that high-achieving students were more likely to make
a connection between everyday activities and mathematics, such as computing a discount while
shopping, as compared to low-achieving math students.18 Although the study did not investigate
if better performance enables students to make the mathematical connections to everyday life,
or if seeing the connection enables better math performance, the correlation holds promise for
Scratch-based computer programming lessons. The students can choose backdrops of real-world
environments in their programs, or they may simply connect the activity to their own recreational
game playing.

The Scratch programming environment is conceptually similar to the Alice programming
environment, in which programmatic elements are dragged and dropped as tiles to create animated
movies and video games.19 Alice has been used in introductory-level computer programming
courses to expose students programming constructs free from the syntactical challenges posed
by standard languages such as C/C++ and Java. The use of Alice in treatment groups at several
community colleges was found to show statistically significant improvements in algorithmic
thinking,20 an ordering of logic that supports mathematical reasoning skills.

Learning of mathematics and problem solving tends to be cumulative, and the ability of
students to advance in mathematics-dependent subjects relies upon mastering skills during the
earlier years of schooling.21 For this reason it is crucial to develop mathematical reasoning
abilities early in the K-12 years.

A pilot effort at Arizona State University East was designed to introduce elementary school
students to computer science and to have the students tackle real-world problems this context.
The primary objective of the Arizona State project is to make technology accessible to school
children, and in particular, to introduce students to “how” computers work rather than simply
“what” computers can do. Initial results were positive and the students demonstrated proficiency
in answering computer-technology questions, although the assessment was not extended to the
mathematical concepts that are applicable to computer science.22

The Scratch environment has been promoted in schools and community centers for media-
arts initiatives, technological fluency, and exposure to game programming,23–25 but in published
work has never been explicitly used to develop proficiency with mathematical problem-solving
and reasoning. Similarly, initiatives using other multimedia development environments26,27 and
general K-12 computer science curricula28 focus primarily on the technological fluency of the
participants, whereas we aim to develop curricula that directly addresses fundamental mathe-
matical problem-solving skills, in addition to state-mandated educational standards, within the
context of computer programming.

III. Participants and Context

This study took place at two public schools in a financially under-resourced urban area
of Philadelphia. These schools are populated by students of lower-income families and the
percentage of students receiving free or reduced-price lunches is 61% and 90%. The students
are predominantly African-American, comprising 80% and 97% of the student bodies at the two
schools. The control group against which we compare the results of our treatment groups resides

P
age 13.319.6

at one of these two schools. The students were not randomly assigned to their classrooms by the
authors. They were assigned using the school’s normal methods. The author’s, Teaching Fellows,
were assigned to their partnering teacher based on their mutual teaching interests.

We developed a four-lesson Scratch curriculum for fifth and sixth grade students. The classes
range in size from 22 to 33 students each. The students were instructed in math for an hour and
a half each day. The Scratch curriculum consists of four 45-minute lessons over the duration of
a month with two additional days for pre- and post-testing.

The classroom teachers in this study were eager to have their students use computers for more
than their typical activities including Fun Brain29 and First In Math.30 The students enjoyed
activities that enabled them to work individually to augment their daily math lessons. The
classrooms have between four and six computers each, seldom used by the teachers for structured
lessons due to their limited number. The computers were primarily available for students to use
independently or without guided instruction. While the teachers understand the importance and
potential of utilizing technology in mathematics education, they have not the expertise to develop
lessons that truly integrate computing technology into existing curricular goals.

The school sites in this study were chosen for three reasons. The first reason is the existing
relationship between the individual schools, the classroom teachers, and the NSF Graduate
Fellows. The schools are in the second year of a three-year partnership with Drexel University.
Two of the four NSF Graduate Fellows are participating for their second year and the other
two are first year participants. One of the fellows is a Computer Science Ph.D. student, one is
a graduate student in the Department of Computer Science and the School of Education, one
is an Electrical Engineering Ph.D. student, and one is an Computer Engineering Ph.D. student.
Prior to the beginning of the 2007 academic year none of the fellows had significant experience
using the Scratch programming environment.

The second reason for choosing the sites was due to previous research investigating the use
of technology in K-12 mathematics education. This research has concluded that low-performing
students receive a significant benefit from the CAI curriculum.31,32 In addition to the impact
of the intervention, the gains can also be attributed to the increased level of attention paid to
the subject matter by the students, thereby leading to increased performance.33 Recognizing the
similarities between the students in the studies and those in our classrooms, we believed that
our students would greatly benefit from a Scratch-based technology curriculum.

The final reason for choosing the sites was based on the Fellows’ experiences in developing
lesson plans that integrate new educational technology while meeting requirements to specifically
address the state of Pennsylvania educational standards. The Fellows desired to provide the
students with the opportunity to utilize new and innovative technologies without interfering with
instruction time to achieve the state and federally mandated instructional goals.

IV. Methodology

Each of the Fellows taught the Scratch lessons to one classroom. The classroom teachers
were present during the lessons although they did not provide instructional support during the
lessons. At one of the two schools, the students participated in the lessons in a school computer

P
age 13.319.7

lab using Apple eMac computers. In classrooms at the other school, the students used Windows-
based laptop computers brought into their classroom by the teaching Fellow. Classroom notes,
pre- and post-test results, student Scratch files, and Bath County Computing Attitude Survey34

results constitute the data used for this study.

In this study we set out to ask, “Can Scratch be used as an environment to strengthen students’
problem solving skills; and, can allowing students to become technology creators improve their
computing attitude; and, can the teaching Fellows develop lesson plans using new technology that
specifically address state-mandated educational standards?” Three related analyses will provide
insight into these questions:

• Assess the students’ problem solving abilities, as measured by our pre- and post- test
results. The tests were created to elicit specific problem solving behaviors. They consisted of
mathematics problems that could be solved using various techniques, with some techniques
being more efficient than others. The results are compared before and after the experiment,
and compared for significance against those of the control group.

• Assess the students’ computing attitudes, as measured by the Bath County Computing
Attitudes Survey. The survey was administered to the students prior to beginning any of
the lessons. The survey was modified to use language familiar to the students. The surveys
were coded so the students were asked an additional question identifying their gender at
the end of the survey.

• Fellows’ ability to develop lesson plans addressing state standards, as documented by the
production of four lesson plans ready for publication in the Teach Engineering35 database.
All of the Scratch-based plans indicate the state standards addressed in each lesson.

V. Pre- and Post-test Administration and Scoring

Three fifth grade and three sixth grade classes took the pre-test and post-test. A total of 135
students took the pre-test and 133 students took the post-test; 113 students took both tests.
Our analysis pertains to those students who took both tests. The total includes a control group
consisting of 40 students from fifth and sixth grade who were also tested. Both pre- and post-test
contained three questions each presenting the students with an opportunity to employ an efficient
problem-solving strategy (e.g. multiplication) or a less efficient method (e.g. repeated addition)
yielding the same answer. Fig. 1 shows a sample question from the assessment pre-test. All test
items are aligned with exams and standards that the students are regularly expected to perform
and address at their grade level.

You are given $20 to buy supplies for your class. A set of supplies costs $2.15. How many students can you

purchase supplies for? How much change would you receive?

Fig. 1. Question from the pre-test

The tests were analyzed for problem solving strategies, as described in Table I, to emphasize
the use of an appropriate approach more the arrival at a correct answer. To score the tests, each
question is given one or more letter codes from Table I. It is possible to receive more than
one code for a question if, for example, the student begins to use an incorrect or inefficient

P
age 13.319.8

methodology for solving a problem (e.g. using repeated addition or subtraction instead of
multiplication or division), and then changes to the correct one. It is also possible to receive
multiple codes if the student uses an efficient methodology to solve the problem but makes a
minor mechanical error (e.g. a small arithmetic mistake). The goal is to receive a code of A,
indicating that the correct technique was used to solve the problem to completion.

Each letter score in Table I corresponds to a numeric score. A score of A corresponds to 16
points for using an efficient technique to complete the problem, a score of B corresponds to
8 points for using an efficient technique but not finishing the problem, a score of C is worth
4 points for using less efficient mathematical technique, and scores of D and E are worth no
points for either making a mechanical error or for being off-task. As there were three questions
on each test, the total possible score is 48.

TABLE I

ENCODING AND EXPLANATION OF THE SCORING FOR PRE-TESTS AND POST-TESTS

Coding Explanation

(A) Used technique appropriately to comple-

tion

The most appropriate technique was used to completely answer the

question being asked.

(B) Used technique appropriately not to

completion

The most appropriate technique was attempted, but a serious mechanical

error was made in its execution, or the question was not completely

answered.

(C) Used technique inappropriately A suboptimal technique (for example, using repeated addition instead

of multiplication) was used to answer the question, or to attempt to

answer the question.

(D) Minor mechanical error not related to

technique

Regardless of the technique chosen, a small arithmetic error was made.

Enough evidence was shown to indicate that the student understood the

technique to use to solve the problem, but made a simple error perhaps

due to the time constraint. This code is used in conjunction with other

codes; for example, if a student used the optimal technique but made

a small adding mistake, this code is used along with “Used technique

appropriately to completion.”

(E) Off task No attempt was made to solve the problem, the student’s work is

unintelligible, or the student’s work cannot be interpreted.

VI. Scratch Lesson Description and Administration

The Scratch-based lessons are designed to provide students with practice in applying and
evaluating mathematical problem solving techniques in the context of computer programming.
The students are then expected to apply some of those mathematical problem solving techniques
to in-situ problems that they have practiced during the Scratch lessons. The Scratch lessons
introduce students to both efficient and inefficient mathematical problem solving methods used
by computer scientists in real-life contexts, and provide the students with a visual means to
evaluate their results after applying a particular method.

Fig. 2 shows an example of the visual cue presented to the students to evaluate the correctness
of their solution. In the Scratch-based lesson of Fig. 2, students were asked to “debug” a Scratch
script, a common term used in computer programming to correct errors in an existing program.

P
age 13.319.9

In this lesson, the game character may pick a fixed number of cherries each time he jumps, and
we call this number n. The character’s basket, however, holds a number of cherries that is not
evenly divisible by n. Fig. 2(b) shows what happens if the character jumps too many times and
his basket overfills with cherries.

One of the objectives of this exercise is to help the students visualize the mechanics occurring
within a multiplication operation. In the pre-test, it was clear that the students often used repeated
addition operations rather than a more efficient multiplication operation. Students were taught
that a computer programmer will use multiplication to efficiently encode a “looped” operation
instructing the game character to jump specified number of times, which the game character then
illustrates as an act of repeatedly adding cherries to the basket. In another Scratch activity, this
point was further emphasized by drawing a square on the Scratch “stage” first by placing the
same instructions four times, once for every side of the square, then by substituting a control
structure to loop one instruction four times. Many students made mistakes when they used the
repeated instruction-placement method, revealed to them when the square was mis-drawn, to
highlight the weaknesses of using an “inefficient” (addition) method versus a more efficient
(multiplication) method.

In addition to learning to substitute one multiplication operation for several addition operations,
students also practiced rounding numbers in context with the Scratch exercise in Fig. 2. Students
demonstrated in the pre-test that they often have trouble rounding numbers in context, instead
relying upon ruled-based methods (e.g. rounding up when the next significant digit is greater
than or equal to five). For example, in the pre-test, students were given a hypothetical $20 bill
to buy supply kits at a cost of $2.15 each for their classmates. The question asked for how many
classmates could they buy supplies. Many students clearly demonstrated that they had trouble
reasoning to round the number of supply kits they could purchase down to the nearest whole
number. In the Scratch activity shown in Fig. 2(b), the temptation for a student would be to
round the number of jumps to the next largest whole number, causing the basket to overflow
as in Fig. 2(b). When the jumping action is looped a correct number of times, determined by
rounding down in this context, the student sees that the basket does not overflow before the
program terminates.

 (a)

(b)

Fig. 2. (a) Screen shot of the Cherry Picker game before basket overflow; and (b) a screen shot after basket overflow

P
age 13.319.10

VII. Pre-test and Post-test Results

Of the three treatment groups, two groups increased their mean scores by approximately 5 (out
of 48) points. All but one treatment group showed an overall improvement, except for Treatment
Group 3, which scored the highest on both tests. The control group actually out-scored most
of the treatment groups in the pre-test, but showed no improvement between the pre-test and
post-test. As a whole, the treatment groups show an 9% improvement between the pre-test and
post-test in choosing an efficient mathematical technique, as compared to the control groups’
26% decrease.

TABLE II

PRE- AND POST- TEST DATA ANALYSIS

Group Number of

Students

Pre-Test

Mean

Post-Test

Mean

Percent

Increase

Treatment Group 1 19 28.9 33.5 16%

Treatment Group 2 19 22.7 24.1 6%

Treatment Group 3 21 37.3 37.0 -1%

Treatment Group 4 14 17.4 22.5 29%

Total Treatment Group 73 27.5 30.0 9%

Control Group 1 16 26.1 18.3 -43%

Control Group 2 24 33.4 25.9 -29%

Total Control Group 40 30.5 22.9 -26%

An analysis of covariance (ANCOVA)36 is used to answer the question, “Is there a strong
linear relationship between the pre- and post-test scores within the individual classes as well
as between the treatment groups and control group?” This analysis is two-fold. First, Levene’s
Test for Equality of Variances36 yields an F value that enables us to conclude that the mean
variances are equal and that the post-test scores are equally spread between the treatment and
control groups, F (1, 111) = 0.83, p < 0.01.

Despite the conclusion from the Levene’s test, the Tests of Between Subjects36 yields an F

value concluding no significance and does not allow us to reject the null hypothesis, F (2, 111) =
24.54, p < 0.05. We expected this test to yield the opposite result. As a result of this analysis,
we put forth several plausible explanations.

First, we recognize that there are factors beyond our control such as exceptional teacher
performance, help from school support staff, or home assistance to the students that could
contribute to the performance improvements within the treatment group. Second, the Scratch
lessons are designed to provide students with practice in applying and evaluating different
methods of problem solving; this practice may lead to an increased amount of time spent on-
task and a greater attention to correctness. Such contributing factors, independent of the Scratch
lesson methodology, could lead to improved performance in the treatment group.

P
age 13.319.11

VIII. Survey Results Analysis

Computing attitudes are important to measure because in addition to helping students to
improve their application and evaluation of mathematical problem solving techniques, the Fellows
desire for students to experience a vantage point as creators, rather than consumers, of technology.
To assess the attitudes students have toward computing technology, we administered the Bath
County Computer Attitudes Survey.34 The survey is designed to measure the attitudes of students
in grades four through twelve towards computers. The Construct Validity was validated by Bear
et al. using 551 students in grades four through seven.37 The analysis was performed using data
from 70 students from the treatment group, those who fully answered the pre- and post-test
questions and completed they survey. We selected this survey because of its applicability to our
population’s age group.

Using Pearson Correlation Analysis,36 we found a significant correlation between survey
questions that pertain to a student’s interest in studying technology. This correlation seems
natural, since the students are being taught using a modality and medium with which they indicate
a high degree of familiarity, similar to computer games. The majority of students indicate an
interest in, familiarity with, and access to computing technology, all suggestive that Scratch as
an instructional tool would be an effective way to practice the mathematical reasoning skills
useful to problem solving. The practiced application and evaluation of mathematical methods
are essential for mastering core curricular content as guided by state educational standards.
Therefore, Scratch could be used as a way to improve academic performance on core curricular
material.

For the question, “People who like computers are weird,” there is a significant correlation
between gender and agreement with this statement, r(70) = −0.254, p < 0.05. The four students
who responded positively to this question were all male. Gender also correlates to responses to the
question, “Learning to program a computer is something I can do without,” r(70) = −0.309, p <

0.01. Female students, in majority, disagreed with this statement while male students agreed with
it.

Examining the questions that pertain to home ownership of computers and the perceived
usefulness of and computers, we note that the overwhelming majority of students, 86%, report
owning a computer at home and that 70% of students use computers at least one hour per
week. Unfortunately, a lower percentage, 50% of students, agree that “computers help people to
think.” This leads us to speculate that computers, to many students, are for recreational rather
than educational purposes.

The survey score histogram is shown in Fig. 3. The maximum survey score for a positive
attitude toward technology, 52 points, is obtained by one student. The most frequent survey score
(n = 16) is 46 points. The average survey score is 41 points. We interpret these results to mean
that the students currently have positive attitudes towards computing, yet there is ample room
to expand the range of uses to which students apply their computer time. Cultivating positive
attitudes is important because of research correlating post-secondary computer science student
retention and positive computing attitudes.38 Further, the room for improvement is significant
to the Fellows because of the continuing objective to have students see themselves as creators,
rather than simply users, of technology.

P
age 13.319.12

Fig. 3. Computing attitude survey scores for the treatment groups

IX. Fellows’ Ability to Develop Lesson Plans

To satisfy the requirements of the GK-12 Fellowship program, teaching Fellows are required
to develop lesson plans that conform to a specific template. To ensure the activities we do
with students support their required curricular goals we are required to correlate the lessons
we develop with the state standards. We were successful in developing full lesson plans that
addressed the following state standards:

• Science & Technology:

• 3.1.7.A Explain the parts of a simple system and their relationship to each other.
• 3.1.7.B Describe the use of models as an application of scientific or technological concepts.
• 3.2.7.A Explain and apply scientific and technological knowledge.
• 3.2.7.C Identify and use the elements of scientific inquiry to solve problems.
• 3.6.7.B Explain information technologies of encoding, transmitting, receiving, storing, re-

trieving, and decoding.
• 3.7.A Describe the safe and appropriate use of tools, materials, and techniques to answer

questions and solve problems.
• 3.7.C Explain and demonstrate basic computer operations and concepts.
• 3.7.D Apply computer software to solve specific problems.
• Mathematics:

• 2.2 Computation and Estimation
• 2.4 Mathematical Reasoning and Connections
• 2.5 Mathematical Problem Solving and Communication
• 2.9 Geometry P

age 13.319.13

X. Conclusion

The purpose of this study was to investigate the use of Scratch in middle school classrooms to
teach problem solving skills to students. Based on the results of this study, it can be concluded
that the Scratch-based lessons can be beneficial to the students learning problem-solving skills.
This is consistent with previous research on the use of technology-based curricula that indicates
its efficacy in K-12 education.

The primary finding from this study is that on gain scores on the mathematics test, the
students who the Scratch-based lessons, outperformed those who did not use it. The survey
results highlight students’ willingness to participate in computer-based activities despite not
using computers for large amounts of time. The Fellows were successfully able develop a set of
standards-based lesson plans that integrate technology without sacrificing the students mandated
curricular goals. The lessons and findings presented in this study are the first portion of a year-
long study the Fellows will continue implementing in their respective schools. Our future work
includes the development and publication of additional lesson plans.

P
age 13.319.14

References

1. R. Sawyer, The Cambridge Handbook of The Learning Sciences. Cambridge University Press, 2006.

2. L. Cuban, Oversold and Underused: Computers in the Classroom. Harvard University Press, 2001.

3. Scratch, http://scratch.mit.edu. M.I.T. Media Labs.

4. W. Reitman, Cognition and Thought. Wiley: New York, NY, 1965.

5. L. Fan and Y. Zhu, “Representation of problem-solving procedures: A comparative look at china, singapore,

and us mathematics textbooks,” Educational Studies in Mathematics, vol. 66, no. 1, pp. 61–75, Sept. 2007.

6. A. Ellis, Research on Educational Innovations. Eye on Education: Larchmont, NY, 2005.

7. “Falling through the net: Defining the digital divide,” National Telecommunications and Information Adminis-

tration, http://www.ntia.doc.gov/ntiahome/fttn99/contents.html, Tech. Rep., Oct. 2000.

8. B. Gannod, “Technology education for kids: Cultivating technology professionals of tomorrow and today,” in

Proc. of the ACM Annual Conf., Jun. 2003.

9. W. Ofosu, “Equity in the educational environment,” in Proc. of the ACM Annual Conf., Jun. 2001.

10. “e-learning: Putting a world-class education at the fingertips of all children,” United States Department of

Education, http://www.ed.gov/about/offices/list/os/technology/reports/e-learning.pdf, Tech. Rep., Dec. 2000.

11. “Academic standards for science and technology,” Pennsylvania Department of Education,

http://www.pde.state.pa.us/k12/lib/k12/scitech.pdf, Tech. Rep., Jan. 2002.

12. N. S. Foundation, Bachelor’s degrees awarded by field, citizenship, and race/ethnicity of recipients: 1995-2004.

NSF: http://www.nsf.gov/statistics/nsf07308/pdf/tab4.pdf, 2004.

13. M. Fox, Colleges and Universities Hold Key to Improving Science and Mathematics for All.

http://www4.nationalacademies.org/onpi/oped.nsf, Jun. 1999.

14. S. Leung and C. Johnson, “A hierarchical optimization framework for autonomic performance management of

distributed computing systems,” in Proc. of the ACM SIGITE, Oct. 2005, pp. 37–42.

15. A. Ralston, “Do we need any mathematics in computer science curricula?” AMC SIGSCE Bulletin, pp. 6–9,

Jun. 2005.

16. L. Sherrell, J. Robertson, and T. Sellers, “Using software simulations as an aide in teaching combinatorics to

high school students,” ACM J. of Computing Small Colleges, 1993.

17. T. Richardson and J. Lyons, “Developing effective k-5 mathematics educational software,” in Proc. of the ASEE

annual conference, Jun. 2005.

18. R. Stevens, V. Mertl, S. Levias, L. McCarthy, S. Goldman, L. Martin, R. Pea, A. Booker, K. P. Blair, N. Nasir,

M. Heimlich, G. Atukpawu, and K. O’Connor, “At home with mathematics: meanings and uses among families,”

in Proc. of the ACM Conf. on Learning Sciences, Jun. 2006, pp. 1088–1093.

19. Alice, http://www.alice.org. Carnegie Mellon University.

20. S. Cooper, W. Dann, A. Hutchinson, and B. Moskal, “The alice curriculum: Impact on women in programming

courses,” in Proc. of the ASEE Annual Conf., Jun. 2006.

21. T. N. A. of Sciences, Learning and Understanding: Improving Advanced Study of Mathematics and Science in

U.S. High Schools. NAS: http://www.nap.edu/openbook/0309074401, 2002.

22. B. Gannod, “Incorporating higher education computer animation principles into primary education math

systems,” in Proc. of the ASEE annual conference, Jun. 2003, p. 1660.

23. Y. Kafai, K. Peppler, and G. Chin, “High tech programmers in low income communities: Creating a computer

culture in a community technology center,” in Proc. of Communities and Technology, C. Steinfeld, B. Pentland,

M. Ackermann, and N. Contractor, Eds., 2007, pp. 545–562.

24. K. Peppler and Y. Kafai, “Collaboration, computation, and creativity: Media arts practices in urban youth

culture,” in Proc. of Computer Supported Collaborative Learning, C. Hmelo-Silver and A. O’Donnell, Eds.,

2007.

25. K. Peppler and Kafai, “Creative coding: The role of art and programming in the k-12 educational context,” in

MIT Media Labs, 2005.

26. L. Werner, S. Campe, and J. Denner, “Lifelong student engagement in it: Middle school girls + games

programming = information technology fluency,” in Proc. of the IASTED, Oct. 2005, pp. 301–305.

27. S. Campe, L. Werner, and J. Denner, “Information technology fluency for middle school girls,” in Proc. of the

IASTED, Aug. 2005.

28. A. K.-. T. F. C. Committee, A Model Curriculum for K-12 Computer Science. ACM:

http://csta.acm.org/Curriculum/sub/K-12ModelCurr2ndEd.pdf, Mar. 2003.

P
age 13.319.15

29. Fun Brain, http://www.funbrain.com. Pearson Education.

30. First in Math, http://www.firstinmath.com. Suntex International Inc.

31. H. Ketamo, “mlearning for kindergarten’s mathematics teaching,” in Proc. of the IEEE Wkshp. on Wireless and

Mobile Tech., Aug. 2002, pp. 167–168.

32. N. Shin, C. Norris, and E. Soloway, “Effects of handheld games on students learning in mathematics,” in Proc.

of the ACM Conf. on Learning Sciences, Jun. 2002, pp. 702–708.

33. P. Vahey, D. Tatar, and J. Roschelle, “Leveraging handhelds to increase student learning: Engaging middle

school students with the mathematics of change,” in Proc. of the ACM Conf. on Learning Sciences, Jun. 2004,

pp. 553–560.

34. G. B. et. al, “Attitudes toward computers: Validation of a computer attitudes scale,” J. of Educational Computing

Research, vol. 3, no. 2, pp. 207–18, Jun. 1987.

35. Teach Engineering, http://www.teachengineering.com. National Science, Technology, Engineering, and Math-

ematics Education Digital Library.

36. M. Gall, W. Borg, and J. Gall, Educational Research: An Introduction, 6th Ed. Allyn and Bacon, 1995.

37. P. Moroz and J. Nash, “Bath county computer attitude scale: A reliability and validity scale,” in Proc. of the

ASEE Annual Conf., Jun. 1997.

38. T. Crenshaw, E. Chambers, H. Metcalf, and U. Thakkar, “A case study of retention practices at the university

of illinois at urbana-champaign,” in Proc. of ACM SIG: Computer Science In Education, 2008.

P
age 13.319.16

