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Abstract – Cadets majoring in Cybersecurity at the United States Coast Guard Academy are 
typically enrolled in the department’s Introductory Cryptography course during the Fall of their 
Junior year. Many of these students struggled to understand the need to use modular operations 
to solve quadratic equations modulo N. This was because homework assignments requiring the 
solution of these equations typically employed equations for which regular real operations were 
perfectly satisfactory. Quadratic equations modulo N are assigned to help the students recognize 
the similarities between modular and real arithmetic while also helping them see the differences. 
These equations are also introduced to prepare the students for the study of elliptic curves. Three 
specific differences between modular quadratic equations and real arithmetic quadratic equations 
were identified. Modular arithmetic equations can fail to have any solutions if the modulus for an 
otherwise acceptable equation does not permit a multiplicative inverse required for solution. 
Modular quadratic equations can also have solutions where real quadratic equations would fail to 
have any solutions (complex solutions). And finally, modular quadratic equations with 
composite moduli can have many more than two solutions. All three of these differences can be 
exploited to prevent the students from solving a quadratic equation using real arithmetic methods 
and thus compel them to use modular techniques. It was observed on the homework assignments 
that a significant fraction of the students failed to use modular techniques to solve the quadratic 
equations that were assigned and it was suspected that many of those that did were unsure of 
why they needed to employ them. After constructing quadratic equations that took advantage of 
the peculiar properties of modular arithmetic the students were unable to use real arithmetic 
techniques and had to resort to modular methods thus reinforcing the need to use those methods 
to solve the modular equations. 
 
 
Introduction 
Modular arithmetic is a staple of modern cryptography[1][4]. While Discrete Mathematics is a 
prerequisite for the Introduction to Cryptography course at the USCGA, students still struggle to 
appreciate the similarities and differences between real arithmetic and modular arithmetic. In 
order to help the students gain familiarity with the cryptographic applications of modular 
arithmetic they are given 1st and 2nd order congruences mod n to solve for their homework. This 
also readies them for introduction to elliptic curves which use 3rd order congruences[3]. 
Unfortunately, they often eschew modular methods of solving the 2nd order congruences 
preferring to fall back on other methods of solving quadratic equations with which they have 
greater familiarity. This can lead them to miss solutions or not appreciate the modular nature of 
the 2nd order congruences. In order to encourage the students to use modular methods to solve 
these types of equations we assign congruences that cannot be solved using the standard real 
techniques. Then when confronted with a problem where these techniques break down they must 
of necessity turn to modular methods to get the correct results. This paper describes techniques 



for constructing 2nd order polynomial congruences mod n of the form ax2 + bx + c ≡ 0 that cannot 
be easily solved using the standard real techniques such as graphing, factoring, completing the 

square, or the familiar quadratic formula 𝑥𝑥 = −𝑏𝑏±√𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

. 
 
Traditional ways of solving quadratic equations 
There are four typical methods for solving real quadratic equations of the form ax2 + bx + c ≡ 0 
[2]. These include factoring, completing the square, the quadratic formula, and graphing.  
 
Example 1: if x2 + 2x + 1 = 0, the student can factor the equation into (x+1)(x+1) = 0. This 
would result in a double root at -1. 
 
Example 2: if x2+ 4x + 3 = 0, the student can complete the square by adding 1 to both sides of 
the equation resulting in x2 + 4x +4 = 1. This then leads to (x+2)2 = 1. Taking the square root of 
both sides results in x + 2 = ±1. Solving for x gives the roots -3 and -1. 
 

Example 3: if x2 – x - 2 = 0, the student can use the quadratic formula 𝑥𝑥 = −𝑏𝑏±√𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

 to get 𝑥𝑥 =
1±�12−4(−2)

2
 = (1±3) /2. This results in roots at 2 and -1. 

 
Figure 1 contains graphs of examples 1 and 2 showing the zero crossings (roots) of each. 
 

 
Figure 1 graphs of example quadratic equations 

 
Using the quadratic formula to solve quadratic congruences 
A popular approach to deriving the quadratic formula is to complete the square as in example 2 
but using the variables a, b, and c rather than specific numbers from a particular example. The 
quadratic formula can in many cases be used to solve quadratic congruences as long as we use 
modular versions of the operations used to compute square roots, handle negative numbers by 
reduction modulo n and perform divisions by using multiplicative inverses. It should be noted 



that congruences mod a composite n are not subject to the Fundamental Theorem of Algebra and 
by proper choice of n many more than 2 roots can be obtained. These additional roots will be 
obtained when solving for the square roots of the discriminant. This is because the procedure for 
solving for square roots involves factoring the modulus n, solving for the square roots mod each 
of the factors, and then recombining the results using the Chinese Remainder Theorem [4]. 
Alternatively, when n is small an exhaustive search can yield all the possible square roots mod n. 
This can, and often does, result in many more solutions to a given quadratic congruence. Let us 
revisit the first example with a mod of 9 using the quadratic formula. 
 
Example 1 mod 9 using the quadratic formula and replacing the operations with their modular 
counterparts. 
x2 + 2x + 1 ≡ 0 mod 9 
Step 1 write out the quadratic formula 

𝑥𝑥 = −2±�22−4(1)
2

 = 𝑥𝑥 = −2±√0
2

 
Step 2 solve the equation d2 ≡ 0 mod 9. An exhaustive search of the 9 possibilities results in d ≡ 
0, 3 , 6. Which is two more solutions than the single real solution of 0. 
Step 3 identify the multiplicative inverse of 2 mod 9. This can be accomplished in a variety of 
ways by the student who has been introduced to these techniques by this point in the 
course[1][4][6]. The multiplicative inverse of 2 mod 9 is 5 (i.e., 2*5 = 10 ≡ 1 mod 9). The 
resulting formula is 5(-2±d) mod 9. 
Step 4 substitute the different values of d into the above equation and reduce them mod 9. 
5(-2+0) ≡ -10 ≡ 8 mod 9 
5(-2+3) ≡ 5 mod 9 
5(-2+6) ≡ 20 ≡ 2 mod 9 
Note that by choosing a composite n (in this case n = 9) we were able to create a congruence 
with three solutions vice the single (or rather double) root of the real quadratic equation! 
 
Constructing congruences to impede the traditional solution techniques 
Case 1 – factoring. If we restrict the leading coefficient a to be equal to 1 in the quadratic 
congruences that we construct we can make use of the Integral Root Theorem (a special case of 
the Rational Root Theorem) [5] which states that the rational roots p/q of a given polynomial  

anxn + an-1 xn-1 + …a1x + a0 = 0 
with leading coefficient an and constant coefficient a0 must satisfy the conditions that q | an and p 
| a0. Here the expression q | a signifies that q can be divided evenly into a with no remainder. 
With an = 1 the only integer that divides 1 is 1 and hence the only integer roots that satisfy the 
real solution of the given quadratic equation/congruence will be the factors of a0 (i.e. c in the 
equation x2 + bx + c). It will suffice therefor to factor the term c and check each of these factors 
to see if they are a solution to the quadratic equation. If they are not, then factoring the equation 
will not work. It should be noted that if the equations are constructed to produce a negative 
discriminant it will also be impossible to factor the equation since no real roots exist. 
 



Case 2 – Completing the square. In order to complete the square an integer value must result 
from computing the term (b/2a)2. If we are restricting a to be equal to 1, this means that b must 
be odd. If it is desired to have an a that is not equal to 1, then this expression must be computed 
and must result in a non-integer value. Again if the discriminant of the equation is negative, 
completing the square will not result in an expression with real roots. 
 

 
Figure 2 Spreadsheet used to help satisfy conditions for impeding traditional solution techniques 
 
Case 3 – Graphing. In order to prevent a student from graphing solutions to the given quadratic 
congruence it suffices to make the discriminant negative. This will result in two complex roots 
which cannot be graphed (i.e., the resulting graph of the equation will not intersect the x axis). 
 
Case 4 – Quadratic Formula using real operations. Given that the discriminant of our quadratic 
congruences is negative we need to ensure that the modular reduction of the discriminant is not a 
perfect square. Otherwise the student will be able to execute a single modular reduction and take 
the positive and negative square roots of the perfect square and continue on with real operations 
to solve the given congruence. 
 
Case 5 – Real methods produce at most two distinct real roots. Use of a composite n can produce 
multiple integer roots/solutions to a given quadratic equation. In fact, congruences can be found 



that satisfy the first four cases and then different moduli can be chosen that will result in 
completely different sets of roots (both number and content).  
 
To assist in generating suitable equations a spreadsheet can be used. See Figure 2. Note that cell 
G4 in the spreadsheet contains the computation of the discriminant. Cells G1 through G3 contain 
the coefficients a, b, and c, respectively of the equation/congruence ax2 + bx + c ≡ 0. Cell G5 
holds the modular reduction of the discriminant. It should be verified that this is not a perfect 
square. Cell G6 holds the result of the computation of the term (b/2a)2. This should be a non-
integer to ensure that the completion of the square cannot be carried out. 
 
Results 
Students were assigned the following quadratic congruence for their homework and asked to 
solve it modulo 769 using only modular arithmetic operations.  
 

3x2 + 21x + 36 ≡ 0 mod 769 
 
769 is a prime number so there are at most 2 roots. The discriminant is positive and a perfect 
square. The term (b/2a)2 is a non-integer. A graph of the equation is in Figure 3 below. 
 
 

 
Figure 3 Graph of the homework problem initially assigned 

 
Due to the nature of this congruence the students had factoring, graphing, and the quadratic 
formula (without the need for modular operations) available to solve it. Of the 21 students in the 
class, 14 correctly solved the congruence using modular methods to compute the square root, 
modular reduction of negative numbers, and the multiplicative inverse of 6 mod 769 (i.e., 641) to 
perform the division. The other students took various shortcuts or failed to complete the problem. 
One student solved the problem by factoring first and then reducing the resulting negative 
integers to the correct solution. Many of the students asserted incorrectly that there were only 



two roots for the square root expression (which was true in this case with a prime modulus but 
not true in general for a composite modulus). 
Homework feedback was provided to the students highlighting the need to use modular methods, 
and stressing that a composite modulus could result in more than 2 solutions to a given quadratic 
congruence. The role of the CRT in solving the square root problem mod a composite modulus 
was also emphasized. 
For the final exam, the students were assigned the following congruence mod 51, a composite 
modulus that resulted in four solutions x ≡ 5, 22, 26, 43. 
 

x2 + 3x + 11 ≡ 0 mod 51 
 
Of the 15 students who took the final exam, 8 did the problem correctly using modular methods, 
and found all 4 roots. Previously seven of these eight had correctly completed the homework but 
one had not used the multiplicative inverse. Four did not finish the problem. Of these four, one 
had previously done the homework correctly, one had failed to finish the first time also, the other 
two had not used the multiplicative inverse to solve the homework. The final three all got at least 
one root but less than all four. Two of them had used real methods on their previous homework 
and one had completed the homework correctly. It appears that two of the students had not 
understood the assignment completely when they did the homework and were unable to properly 
solve the congruence using modular methods on the exam. One of the students had failed to do 
the homework assignment correctly but learned from the given feedback and completed the 
exam problem properly. Five of the students did not complete the homework correctly and also 
failed to complete the problem on the final exam. See Table 1 below for a summary. 
 
Number Homework Final Exam 
8 7 correct, 1 DNU Mult Inv 8 correct 
4 1 correct, 2 DNU Mult Inv, 1 DNF 4 DNF 
3 1 correct, 2 real methods 3 missed several roots 
Table 1 Results of quadratic congruence harder solve using real methods & adding solutions 

 
Conclusions and further work 
 

We have shown how to construct 2nd order polynomials equations mod n that are harder to solve 
using real methods and that have an arbitrary number of solutions. When compared to naively 
constructed quadratic congruences that can be solved using a variety of real methods these 
congruences can identify deficiencies in students’ understanding of the modular methods needed 
to solve quadratic congruences. These methods include reducing integers mod n, using 
multiplicative inverses in place of division, and properly solving for all the solutions to the 
square root mod composite n problem. Prior to this pedagogical innovation students often 
struggled to use modular methods when computing the solution to 2nd order polynomials blindly 
using the quadratic formula, completing the square, or factoring while not considering or using 
modular methods. After assigning equations that had been constructed to not allow this, more 
students were able to correctly solve these types of problems on the final exam and we were able 



to identify those students who still failed to grasp the required modular techniques. Going 
forward we will be assigning these especially constructed equations in the homework from the 
beginning in order to prevent students using real methods and getting the correct answers for the 
wrong reasons. The need to find more than two roots is especially important as it highlights an 
important distinction between real quadratic equations and quadratic congruences mod a 
composite n. 
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