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Abstract 

Calls for new paradigms for engineering education are widespread.
1, 2, 3

  Yet, major curricular 

change is difficult to accomplish for many reasons, including having the necessary faculty buy-

in.
4
 Generally, efforts can be classified as either topdown/ structural, in which faculty assess an 

entire program of study and address needs in each component before implementation begins; or 

bottom-up/individual, a more traditional approach that implements change in one class at a time. 

Faculty buy-in, consensus, and resources (unit and institutional) needed for the top-down 

approach make it difficult to accomplish. On the other hand, the bottom-up model is slow, the 

assumption that curricular reform can be affected by an accumulation of individual course 

adaptations is unproven, and the change goals need to have a more systemic focus. Unless the 

curriculum helps students integrate material across the courses, they have difficulty seeing how 

the material they learn in one course will connect to the next.  

We propose an evolutionary approach to curricular reform that capitalizes on the strengths of 

both the top-down and bottom-up models, and builds on the STEM reform literature. This 

approach develops multiple, pairwise linkages among strategic classes in the engineering 

curricula to promote curricular integration and help students see connections between their first-

year courses and subsequent courses. 

Vertically integrated problem-based learning scenarios that link across courses are crucial to this 

model. Our first vertical effort focuses on MatLab, to integrate learning of this engineering tool 

in an introductory computing course with the solution of statics problems in an introductory 

mechanical engineering course. Pre-reform data show that students taking the introductory 

computing course do not see the importance of learning MatLab, because they do not see 

connections to their future courses. This has negative impacts on student motivation, learning, 

and retention. 

The paper outlines this pairwise linkages model, the goals of this project, the framework for 

evaluating the linkages and the types of data we are collecting as part of the evaluation effort. 
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Results from the current study confirm that problem-based team work enhances student attitudes 

towards MatLab. 

Introduction 

Undergraduate education in engineering has been generally successful over the last fifty years as 

measured by the most important metric: a well-educated and productive cadre of effective 

engineers in the engineering professions. However, critics have rightly pointed out increasing 

difficulties in the nation’s engineering curricula and resultant general shortcomings of 

engineering graduates as determined by outcomes assessment. Although these shortcomings take 

many faces, root causes are traceable to shortcomings in the core defining characteristic of an 

effective engineer: strong problem solving ability. Effective problem solving is predicated on: (a) 

thorough understanding of technical background material required for the problem at hand or an 

ability to obtain that understanding; (b) ability to integrate background material; (c) ability to 

sharpen a stated problem and produce a well-structured problem from an ill-structured problem; 

(d) ability to apply the background material systematically and effectively to the problem; (e) 

ability to critically interpret the results of the problem solving; and (f) ability to communicate the 

results of the problem solving. Underlying and pervasive through this process is the ability to 

work in a team towards the problem solving goal.   

Undergraduate engineering education as reflected in engineering curricula in the United States 

has focused strongly on criterion (a) above to the detriment of the other items in the list. Indeed, 

many if not most engineering classes have focused on a through grounding in the “basics” of a 

given discipline as delivered through lecture. This slow but steady evolution to greater reliance 

on lecture about more and more material is a reflection of exploding amounts of knowledge in 

the engineering disciplines over the last fifty years. Yet, with ever more knowledge to be 

imparted, engineering students find themselves with so many details to master that they have in 

general lost sight of the goal: effective problem solving predicated on integrated student 

understanding of technical material.  

In 1991, the National Research Council
1
 criticized undergraduate engineering curricula for not 

reflecting the shifting needs of the engineering profession by saying that these curricula are 

“lacking the essential interdisciplinary character of modern design practice” (p. 4). As a result, 

NRC claimed, engineering graduates are poorly prepared to utilize “scientific, mathematical, and 

analytical knowledge in the design of high quality components, processes, and systems”. The 

ABET 2000 criteria reinforce these perspectives, as has the National Science Foundation in the 

last decade.
5
  Curricular reform efforts have focused on developing new paradigms for 

engineering education, including an emphasis on active student learning and application of 

knowledge (including performing design) rather than passive data gathering, faculty acting as 

mentors and facilitators rather than as lecturers, integration of disciplinary knowledge instead of 

emphasis on isolated facts, emphasis on deep problem solving including problem specification 

instead of “plug and chug” application of equations, innovative forms of student assessment 

focusing on improvement, and a variety of non-technical skills such as communication and 

teamwork central to the workplace.
2 
 Bordogna et al.

6
 argue that more holistic curricula are 

needed that weave process knowledge and fact-based knowledge throughout the undergraduate 

experience. In spite of effective projects funded by NSF, its partner agencies, industry and 

postsecondary institutions, challenges remain in creating and institutionalizing reform initiatives 
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to enhance learning outcomes in science, technology, engineering, and mathematics (STEM) 

fields.  

There are a number of NSF- or corporate-sponsored consortia in which change to (especially) 

tighter curricular integration has been set as the goal, often identified as systemic curricular 

change. There are two general situations in which such deep change is most feasible: (a) a new 

institution with a curricular blank slate; or (b) an institution in which a consensus of faculty 

support wholesale curricular change. Although the NSF-sponsored consortia are due praise for 

the results produced, most US engineering schools fall into neither of these two categories. 

Despite the commonly held view that systemic curricular change is needed, the conundrum is 

how to achieve it. In short, how to build the necessary faculty consensus?  

There are several reasons for this apparent lack of adaptation. One experience to attempt change 

at MIT is instructive. The MIT Department of Aeronautics and Astronautics incorporated active 

learning strategies and assessment tools into their Unified Engineering course after a two-year 

strategic planning process that involved all faculty in the department.
7 
 As they discovered, 

“changing how we teach is more difficult than changing what we teach.” (p. T2A-15). This 

change required not only faculty buy-in, but also administrative and institutional support. There 

is a two-fold message here. First, change in pedagogical methods are, in fact, difficult for faculty. 

Second, systemic change, particularly if attempted in a “revolutionary” way (with all change to 

be implemented simultaneously), is even more difficult. 

Although the NSF coalition program goals are laudable, such change is often difficult to 

accomplish on a typical campus because of the necessary faculty buy-in.
4 
 Put stronger … 

achieving faculty buy-in is the major bottleneck constraining systemic curricular change. 

Systemic curricular change can be termed a top-down approach to reform.  Arguments can be 

made for and against a top-down approach to curriculum reform, in which faculty are involved in 

assessing an entire program of study and addressing needs in each component before 

implementation begins. In the end however, using a top-down approach proves costly in faculty 

time, because these resources appear to be fixed. Hence, it is difficult to obtain the levels of 

faculty buy-in necessary to support systemic curricular change. 

Top-down reform can be successful in two general contexts. First, in a new college or 

department there is no existing educational program and the focus becomes “doing it right the 

first time.” An example can be drawn from the School of Chemical Engineering at the University 

Rovira i Virgili in Tarragona, Spain that went beyond the departmental level with their reform 

efforts to incorporate project-based cooperative learning teams. There, first-year chemical 

engineering students are involved in design projects working in teams that are each led by two 

fourth-year students. These projects are authentic, real-world tasks, such as the thermal treatment 

of industrial wastes, which require students to learn and integrate knowledge from calculus, 

chemistry, physics, fluid mechanics and a number of other courses. This reform transcended an 

individual department to include faculty from mathematics, chemistry, physics and other 

disciplines. Change management was critical for this reform and included a strong industry 

partnership with Dow Chemical Company as part of the faculty management education.
8 
 The 

more common situation is that systemic curricular reform is attempted within an existing college, 

set of departments, and engineering curricula. It is in this context that the NSF-supported 

consortia have operated, and have largely applied a top-down approach to the problem. In the 
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abstract, systemic curricular reform seems most cleanly and quickly achieved following a top-

down approach. However, the revolutionary wholesale change in curricula involved and the 

associated high level of faculty buy-in necessary to implement change before any change results 

are gathered and evaluated have resulted in little, if any, emulation of the systemic curricular 

change programs crafted within the consortia contexts.  

On the other hand, a more traditional approach is to implement change one class at a time. The 

seeming advantage of such “bottom-up” approaches is that change is implemented in an 

evolutionary manner, and thus, the results of change are observable piecemeal, and (assuming 

the change is successful) local faculty consensus for change is enhanced. In effect, this 

evolutionary change model ideally would produce a “snowball effect” in developing faculty 

consensus that would favor change.  

However, in addition to the slower rate of change of the bottom-up model, the underlying 

assumption that curricula reform can be affected by an accumulation of individual course 

adaptations is unproven. The change goals need to have a more systemic focus than typically 

exists in many single course change efforts. A systemic orientation raises different issues in 

change processes that impede or support lasting reform. Fisher and Fairweather
9
 recently found, 

for example, that failure to recruit additional faculty to teach the target course (lack of incentives 

and rewards in the department), lack of fit with the curricula in other engineering departments, 

and institutional policies regarding student enrollment and declaration of major affected course-

level reform efforts. If institutionalization of course-level reform is the goal, success requires 

taking into account a variety of factors beyond the individual course and department hosting it. 

Change efforts require knowing what works, what does not work and why, and being able to 

translate these findings into new circumstances.
10  
Innovations are often not sustainable, and even 

when they are, more comprehensive understandings are required for those successful strategies 

to be adopted and for less effective measures to be avoided. The bottom line is that a more 

comprehensive approach to reform is required than that typically followed in the single course 

change approach to bottom-up reform. 

An evolutionary model 

We propose an evolutionary approach to curricular reform that capitalizes on the strengths of 

both the top-down and bottom-up models, and builds on the STEM reform literature. This 

approach develops multiple, pairwise linkages among strategic classes in the engineering 

curricula to promote curricular integration and help students see connections between their first-

year courses and subsequent courses.  We capitalize on the strengths of both the top-down and 

single-course, bottom-up models, and build on the STEM reform literature. Effective change 

efforts require simultaneous use of multiple strategies and levers applied in systemic and 

systematic ways, rather than as unrelated and individual strategies.
11
  Systemic reform requires 

potential users to be involved during the development and implementation phases.
12
  It requires 

that faculty and administrators recognize the importance of the innovation to the success of 

academic programs, rather than as simply the interest of isolated faculty in discrete class 

settings.
13
  However, given faculty culture, reform efforts are often best implemented in smaller 

steps that permit faculty to maintain individual control over teaching and course development
13
 

and are most successful when promoted through a focus on adoption rather than dissemination or 

mandate. Review of the literature on engineering curriculum reform also suggests that cross-
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functional and interdisciplinary programs promote breadth of knowledge, team-based skills, and 

business sense.
11
  Faculty need to shift from teacher-centered pedagogies to those in which 

students become active participants in the generation of knowledge and problem solving. This 

often equates to “learning-by-doing”, greater emphasis on early introduction of learning tools, 

including computational and technology applications, increased use of team projects based on 

industry problems, and collaborative learning strategies.
14, 15, 16

 

We believe this approach should be familiar to any good engineer: when faced with a complex 

task, try to decompose the task into manageable subtasks. Instead of developing a blueprint for 

total change followed by implementing the entire blueprint into the curriculum, we believe that 

faculty consensus can be built piecemeal by building, from the bottom-up, pairwise linkages 

between courses based on content that students need to integrate across the curriculum such that 

each linkage will reinforce and build on prior student experience. A pairwise linkage could be a 

soft link in which conceptual material from an earlier course could be assumed and built upon in 

the higher level course of the linkage. More interestingly, a pairwise linkage could also be a hard 

link such as that formed by having term project teams consist of students from both courses. It is 

our working belief that by implementing over time a set of pairwise linkages across a curriculum 

that faculty support will evolve towards more support for further developing such linkages and 

more importantly, towards maintaining the linkages. Like a balance beam, the scales of faculty 

support will eventually tip to strongly favor the integrated curriculum based on the set of course 

linkage pairs based on computational tool use. The natural extension to the entire curriculum 

would then be to identify the unifying concepts that span the curriculum and follow the same 

route as we have begun to follow, developing for each unifying concept (i.e., each vertical slice) 

a set of pairwise course linkages, and implementing these linkages over time. 

A specific example is a concern about the lack of strong quantitative problem solving ability for 

undergraduate engineering students as manifest in student understanding of computer-based 

computational tools that support technical problem solving. General computational environments 

such as MatLab, MathCad, and Mathematica are all versatile and capable of being used in most 

situations of relevance to undergraduate engineering students. Because of their varied 

background training, most engineering faculty have individually learned one or another of these 

computational environments. Typical undergraduate engineering curricula reflect professor 

preference in the assignment of computational tools for students to use to complete problem sets 

and projects. The implicit assumption has been that undergraduate engineering students can 

simply “pick up” a specified computational tool and apply it to assigned problems. This 

assumption is false. Modern computational environments are replete with many “features” that 

can each be leveraged for a given class of problem. However, this “high power” comes at a high 

price: a steep learning curve for students. A typical engineering undergraduate has a difficult 

time in applying the tools of a computational environment like MatLab in other than cookbook 

fashion unless the student has systematically developed an understanding of the computational 

environment from an integrated viewpoint. Failure to remember, for example, that in MatLab 

one routinely must build data vectors in order to utilize the rich plotting capability it has can 

block student use of MatLab for visualizing data in plotted form. Failure to remember (or simply 

not knowing) how MatLab in general deals with vector data structures can block the entire 

process. 
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The confluence of the versatility and complexity of modern computing environments with the 

propensity of faculty to select their “favorite tool” for assigned use in completing problem sets 

and projects leaves undergraduate students in a largely untenable position. They are told to use a 

complex environment that either they have not touched before, or one that they have not used for 

several years. The result is that students seek and use cookbook approaches to the particular 

assigned task they face without learning integrating principles for use of the target computational 

environment. Cookbook use precludes student growth in understanding how the tool may be 

used to advantage. One might suppose that once a student takes a freshman-level course 

emphasizing (e.g.,) MatLab, that the student understands the basic principles that underlay any 

computational environment. Then the transfer of understanding from having learned a first 

computational environment (e.g., MatLab) could be made to a new computational environment 

(e.g., Mathematica) with little student effort. In practice, this simply does not happen, and the 

learning literature makes it clear why. In order to support transfer from one context to another, a 

student must thoroughly understand and integrate knowledge at a conceptual level from the first 

context. In order to master even a working subset of MatLab, repeated use in different contexts is 

not only desirable but also mandatory.  

The use of MatLab through the entire undergraduate experience can be thought of as a vertical 

slice through an engineering curriculum. Ideally, this vertical slice would touch all individual 

courses that a student would take. The development of such a vertical slice through engineering 

curricula requires a whole-curriculum perspective, but with an innovative twist. Instead of 

focusing on total conceptual content of a curriculum, we focus on one conceptual topic in this 

project: curricular integration of MatLab through the Mechanical, Civil and Environmental, and 

Chemical Engineering and Materials Science Departments at Michigan State University. Even 

with such narrowing of focus, the question remains: how can the necessary faculty consensus be 

achieved to undertake curricular change that affects the entire curriculum? 

By focusing on multiple, pairwise linkages of strategic classes in engineering curricula, faculty 

are involved across disciplines within engineering. As a result, they will see connections between 

first-year courses and subsequent courses, and will intentionally and naturally build connected 

problem-based learning scenarios into their courses using MatLab. Given that engineering 

faculty are far more likely than faculty in other disciplines to rely on lecture as a primary 

instructional strategy and far less likely to utilize forms of active or collaborative instruction,
17
 

the inclusion of MatLab problem-based activities designed by teams of faculty represents a 

significant pedagogical change in line with recommendations made for systemic change, but not 

frequently adopted.  

Figure 1 shows one possible set of pairwise linkages for MatLab across three programs in the 

College of Engineering.  The introductory computing course is taken by first year students in all 

three programs and has a linkage to the introductory Statics course (taken by Mechanical 

Engineering and Civil and Environmental Engineering students) and the Material and Energy 

Balances course (taken by Chemical Engineering and Materials Science students.)  The linkages 

we propose (shown by the arrows) are hard linkages, in that students from the computing course 

work with students in the other two courses on projects.  The projects are authentic problems in 

the disciplines that require students to use MatLab to compute the solutions. These problems 

help motivate students by introducing them to the tools that they will use in subsequent courses. P
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As students progress through their curriculum, similar linkages are formed across courses.  These 

can be hard linkages, with students working on cross-courses projects, or soft linkages, with 

students carrying forward project work from one course to the next.  In all cases, the underlying 

them of computational tools that are used across the curriculum is maintained. 

Program Mechanical 

Engineering 

Civil and 

Environmental 

Engineering: Structural 

Engineering 

Chemical Engineering 

and Materials Science: 

Chemical Engineering 

Mechanical Design Design of Concrete 

Structures 

Transport Phenomena 

Dynamics Design of Steel 

Structures 

Thermodynamics for 

Chemical Engineers 

Fluid Mechanics Structural Mechanics Mass Transfer 

Mechanics of 

Deformable Solids 

Structural Analysis Fluid Flow and Heat 

Transfer 

Statics Material and Energy 

Balances 

Courses 

 

Introduction to computing tools for engineering: MatLab 

Figure 1:  Examples of linkages across courses in three programs 

The cooperative relationship among faculty is an important aspect of curricular reform, and 

should enhance the potential for institutionalizing the reform efforts. By taking the pairwise-

linkage approach to reform using computational skills as the learning stream (vertical slice), the 

learning outcomes of individual classes also become more connected in process, knowledge, and 

application for the students. The curriculum becomes less a set of courses and more an integrated 

set of learning experiences. It is also important that institutional leaders are supportive early in 

the change process
18
 in order to accommodate scheduling and enrollment in those courses faculty 

identify as appropriate pairwise linkages, to provide resource and infrastructure support, to insure 

appropriate inclusion of activities in reward and evaluation structures for participating faculty, 

and to facilitate inclusion of additional faculty in the future. These areas of departmental and 

college influence have all been shown to be critical factors in institutionalizing curricular reform 

and creating systemic change.
9
  

Preliminary baseline data 

We sought to establish baseline data using a team approach to teaching MatLab in the 

introductory computing course for engineers taught by one of the authors (Sticklen) during 
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summer, 2003. The students (n=31) represent a typical mix of MSU engineering students. They 

were 81% male and 19% female. Their majors include Chemical, Mechanical, Civil, 

Biomechanical and Materials Science Engineering, along with computer science, mathematics, 

physics, no preference and business students. These students were a little older than students in 

this course during the fall or spring semesters: 39% were sophomores, 32% were juniors, 19% 

were seniors and only 6% were first year students.   

The course has traditionally taught MatLab, but during this semester, the instructor had students 

working in teams to learn MatLab in the context of solving a variety of problems. At the end of 

the course, we surveyed the students to determine their perceptions of learning MatLab, of 

teamwork, and if they perceived the utility of using MatLab in their other courses.   

The vast majority (93%) reported that they enjoyed the teamwork and 78% can see the 

importance of teamwork; however, just over half (52%) believe that they understand teamwork 

better after the experience. The believe that the teamwork helped them learn MatLab (78%) and 

are confident that they can figure out how to perform tasks in MatLab that they were not 

explicitly taught in the course: 78% believe that they could implement a FOR loop. There is a 

moderate correlation (r=.52, p< .005) between these items. This indicates that the goal of “near 

transfer” may have been met.   

However, on the question of “far transfer” – do students make connections between MatLab and 

their other courses – the students are less inclined to make these connections. Sixty-three percent 

of the students do not see that MatLab could be important to their later courses and 56% disagree 

that learning MatLab will help them learn other subjects. Furthermore, these two items are highly 

correlated (r=.67, p< .0001) with each other and are also moderately correlated (r = .4 to .5) with 

the questions about near transfer and the questions about teamwork. It appears that using teams 

had a positive impact on the students’ ability to use MatLab not just to solve the immediate 

problems in the course, but on their ability to extend this knowledge of MatLab to other 

problems and their understanding of the broader applications of MatLab. The data suggest that 

structuring the group exercises with a more formal emphasis on near and far transfer may have a 

beneficial impact. 

Project goals 

We are currently in the beginning stages of this project with the goal of integrating MatLab 

across the curricula of Mechanical, Civil and Environmental, and Chemical Engineering and 

Materials Science Departments at Michigan State University.  We expect this will produce two 

desirable results. First, students in the three departments will attain mastery of the MatLab 

computational environment, including both application mastery of a subset of MatLab 

functionality and the ability to learn more about MatLab as needed. To meet this goal, we will 

develop pairwise linkages between strategic courses in the curricula of each department. A 

substantial task is to develop a working taxonomy of course linkage types and to determine 

factors that favor one type of course linkage over another in terms of promoting systemic 

curricular change. We do not expect all pairwise course linkages to be of the same nature, nor do 

we currently know the complete set of linkages from which we will draw. We will identify 

highly coupled linkages and loosely coupled linkages. An example of a highly coupled course 

linkage (hard linkage) would be a course pair in which students in the two courses work together 
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in a collaborative team setting on (for example) a common term project. An example of a loosely 

coupled course linkage (soft linkage) would be two courses in which subject matter of the later 

course assumes and directly utilizes conceptual topics from the earlier course.  

Our second goal is to assess the feasibility of achieving meaningful systemic curricular change 

through a bottom-up evolutionary process grounded on pairwise course linkages. Our approach 

to addressing the need for systemic curricular change in general, and for the integration of a 

single computational tool in particular, is different in two ways from the typical top-down 

approach. First, the top-down approach builds a strong faculty consensus for change by 

appealing logically and persuasively to the body of pedagogical literature indicating change is 

needed, then attempts to undertake a wholesale rewriting of the target disciplinary curriculum. 

Building faculty consensus for such wholesale change, and then maintaining the consensus 

throughout the change process, has been difficult even in the context of the NSF consortia, and 

has not been widely emulated in engineering colleges outside the context of the consortia. Our 

approach will focus on evolutionary curricular change by sequentially implementing change in a 

number of pairwise linkages across the curriculum. An important corollary to our thesis above is 

that faculty consensus for change is more easily constructed and maintained if results of 

incremental steps for change are available during the change process. In an engineering sense, 

the system we are changing has internal positive feedback favoring change. 

Our project will assess a path to systemic curricular change based on a two-fold decomposition 

of the total problem: the specific target of change (the vertical slice) and addressing the specific 

target by developing pairwise linkages one at a time that span the curriculum. In essence, we 

decompose the problem of systemic change along two dimensions: 1. engineered systemic 

curricular change by major integrating concepts (by addressing only one major vertical slice 

at a time); and 2. engineered systemic curricular change over time (by implementing 

additional pairwise linkages following a specified timeline). 

Finally, as we continue this project, we will explore the somewhat orthogonal but important issue 

of determining the learning relation between computational tools for problem solving and 

disciplinary domain knowledge. Tools that support technical problem solving such as 

mathematical methods (for example, calculus) or computational computer-based tools (for 

example, MatLab) should clearly not be viewed in isolation – as ends unto themselves. Rather, 

they should be understood in relation to discipline-specific problem solving. While a great deal 

of effort has been expended in examining the pedagogical linkage between (e.g.,) calculus and 

engineering, very little attention has been paid to the possible pedagogical linkages between 

computer-based computational environments like MatLab and discipline-specific knowledge. 

We hypothesize that knowledge structures students build in mastering MatLab may be used as 

anchors in seeing commonality between discipline-specific knowledge constructs. If this 

hypothesis is confirmed, the result would be a better understanding of how learning 

computational tools and learning discipline specific concepts interact, and how under appropriate 

conditions, learning to use computer-based tools like MatLab can help a student develop a sound 

and usable knowledge structure for understanding in her disciplinary domain. 

 

P
age 9.362.9



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

Bibliography 

1
 National Research Council (1991). Improving engineering design: Designing for competitive advantage. 

Washington, D.C., National Academy Press. 

2
 National Science Foundation (1996). Shaping the future: New expectations for undergraduate education in science, 

mathematics, engineering, and technology. Washington, D.C., National Science Foundation. 

3 
Abet (2000). 

4
 Terenzini, P. , et al  (1996). "Students' out-of-class experiences and their influence on learning and cognitive 

development: A literature review." Journal of College Student Development 37(2): 149-162 (EJ 527219). 

5
 Bordogna, J. (1997). Making connections: The role of engineers and engineering education. 

6
 Bordogna, J., E. Fromm, et al. (1993). "Engineering education: Innovation through integration." Journal of 

Engineering Education: 3-8. 

7
 Hall, S. R., I. Waitz, et al. (2002). Adoption of active learning in a lecture-based engineering class. Frontiers in 

Education, Boston, MA, IEEE. 

8
 Witt, H. J., J. R. Alabart, et al. (2002). Development of coaching competencies in students through a project-based 

cooperative learning approach. Frontiers in Education, Boston, MA, IEEE. 

9
 Fisher, P., J. Fairweather, & Amey, M. J. (2002). EC2000 and organizational learning: Rethinking the Faculty and 

Institutional Support criteria. Annual Meeting of the American Society for Engineering Education, Montreal. 

10
 Senge, P. and Associates (1990). The Fifth Discipline: The Art and Practice of the Learning Organization. New 

York, Doubleday. 

11
 Moore, K. M., J. Fairweather, et al. (2000). NSF Report...Best Practices for Reform in Undergraduate Education 

in Science, Math, Engineering, and Technology: A Knowledge Framework. East Lansing, MI, Center for the 

Study of Advanced Learning Systems, Michigan State University. 

12
 Tornatsky, L. and M. Fleisher (1991). The process of technological innovation. Lexington, MA, Lexington Books. 

13
 Eiseman, J. and J. Fairweather (1996). Evaluation of the National Science Foundation Undergraduate Course and 

Curricular Development Program: Final Report. Washington, D.C., SRI International. 

14
 Hargrove, S. (1996). Business and engineering interdisciplinary design. ABET Annual Meeting. 

15
 Swart, W. (1996). Transforming engineering education at NJIT. ABET Annual Meeting. 

16
 Trevisan, M., D. Davis, et al. (1996). Meeting the challenges of ABET 2000: Defining and measuring deisgn 

competencies. ABET Annual Meeting. 

17
 Fairweather, J. (2002). "The mythologies of faculty productivity: Implications for institutional policy and decision 

making." Journal of Higher Education 73: 26-48. 

18
 Druger, M. (1997). "Reform in undergraduate science education." Journal of Natural Resource and Life Science 

Education 26(4-5). 

 

 

P
age 9.362.10



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

Author Biographies 

Mark Urban-Lurain is Director of Instructional Technology Research and Development in the Division of Science 

and Mathematics Education at Michigan State University. He is responsible for providing vision, direction, planning 

and implementation for using technology mathematics and science education and developed several introductory 

computer science courses for non-computer science students serving 2000 students per semester.  

Marilyn Amey is Associate Professor in the Department of Educational Administration and Chair of the Higher, 

Adult, and Lifelong Education Program at Michigan State University. She was part of a research team studying best 

practices in Science, Math, Engineering and Technology Undergraduate Reform for SRI and NSF, and policy 

evaluator for an NSF Rural Systemic Reform project on math and science curriculum reform in the Navajo Nation. 

Jon Sticklen is an Associate Professor in the MSU Department of Computer Science and Engineering at Michigan 

State University. He has had a strong research record in computer science research, specifically in knowledge-based 

systems. His main contributions have been in the theory and application of principled approaches to knowledge-

based systems following a school of thought known as “task specific approaches.” 

Timothy Hinds is an academic specialist in the MSU Department of Mechanical Engineering. He teaches 

undergraduate courses in machine design and statics as well as advises senior engineering student teams working on 

industrially sponsored capstone design projects. He also teaches a senior-level undergraduate international design 

project course and has taught graduate-level courses in innovation and technology management. 

Taner Eskil is a Ph.D. candidate in the Department of Computer Science and Engineering at Michigan State 

University. Mr. Eskil holds a M.Sc. in Mechanical Engineering and will soon complete his Ph.D. research in the 

area of internet agent support for electronic commerce. Mr. Eskil has been instrumental in developments in the 

College of Engineering freshman gateway course in computational tools. 

P
age 9.362.11


