
AC 2010-1196: CURRICULUM SEQUENCES CONSTRUCTION IN A WEB-BASED
VAN HIELE TUTOR USING BAYESIAN NETWORK

J. Wey Chen, Southern Taiwan University
Dr. J. Wey Chen is a Visiting Professor in the Department of Information System at Southern
Taiwan University. He formerly served a two-year appointment (2007-2009) as the Department
Chair of the Department of Information Management at Southern Taiwan University and was the
Computer Science Department Chair at Western State College of Colorado. His scholarly
interests range widely, from computer science curriculum design to e-learning and software
engineering practices. 

© American Society for Engineering Education, 2010 

P
age 15.338.1



Curriculum Sequences Construction in a Web-based van Hiele 

Tutor Using Bayesian Network 

 

Abstract 

 
Educational content on the Internet is rapidly increasing. Educational institutions and businesses 

are placing more course material online to supplement classroom and business training situations. 

Prior researchers have reported that this new web-based training technology has not integrated 

sound pedagogical practices into the authoring process when developing new tutorials. This paper 

formulates an alternative pedagogical approach that encompasses the van Hiele Model, cognitive 

model, and Bayesian network to design the curriculum content and sequence, to provide 

intelligent navigation support, and to make individualized diagnosis of student solutions in 

learning computer programming possible. 

 

Introduction 

 

Programming is a vital area in computer science education and a fundamental part of the 

computer science curriculum
1
 . Research shows that computer programming languages help 

students develop problem solving ability and analytical skills
2,3,4

. Ebrahimi
5
 claims that the study 

of programming provides a golden opportunity for: 1) understanding human problem solving, 2) 

learning the important aspects of programming, and 3) contributing to the refinement of 

programming languages, training, tools, and design methods. In addition, programming 

experience as a part of IT education allows students to get a better understanding of software, 

which is an essential part of computers
6
. 

 

Although there are a variety of possible motivations for learning to program, the task can be very 

difficult for beginning students of all ages
7
. In addition to the challenges of learning to form 

structured solutions to problems and understanding how programs are executed, beginning 

programmers also have to learn a rigid syntax and commands that may have seemingly arbitrary 

or perhaps confusing names. Tackling all these challenges simultaneously can be overwhelming 

and often discouraging for beginning programmers. 

 

The learning and teaching of computer programming and that of geometry have many common 

features. The van Hiele’s five-phase learning model for teaching computer programming has the 

P
age 15.338.2



capability to produce a higher level of computer programming thinking and a significantly higher 

achievement in learning computer programming
8
. The purpose of this study is to adapt the 

combined van Hiele model of geometric thought and the Cognitive theory to develop a Bayesian 

network-based van Hiele intelligent tutoring system for learning Java programming language.  

 

The van Hiele Model of Geometric Thought 

 

The van Hiele model of geometric thought has been regarded as an effective model for 

mathematical problem-solving. This model identifies five levels of thinking in geometry: (1) 

Visual, (2) Descriptive, (3) Theoretical, (4) Formal Logic, and (5) The Nature of Logical Laws. 

The van Hiele model also defined five phases of learning procedures in course instruction: 

"information," "guided orientation," "explication," "free orientation," and "integration"
9
. 

According to this model, the learner, assisted by appropriate instructional experiences, can be 

successfully promoted from a lower to a high level of geometric thinking. The van Hiele model 

has motivated considerable research and resultant changes in the geometry curriculum by Soviet 

educators, and in recent years, interest has increased in the United States. More and more 

researchers are trying to expand the van Hiele model to facilitate learning in other mathematical 

areas. For instance, in Holland, it is being applied to economics and chemistry.
10

  

 

The Modified van Hiele Model for Computer Science Teaching 

 

Computer programming has long been viewed as a vehicle for teaching students about their 

problem-solving process. The literature review revealed that the van Hiele model of geometric 

thought may be properly modified to apply to the learning and teaching of computer programming 

because both tasks have many features in common. Soloway and his colleagues further confirmed 

that computer programming and mathematical problem solving skills were mutually 

transferable
11,12

  

 

Chen
8
 conducted a study on the Taiwanese technological university students by applying the 

modified van Hiele’s five-phase of learning for teaching computer programming and found that 

the use of van Hiele’s modified five-phase of learning model for teaching computer programming 

may produce a higher level of computer programming thinking and a significantly higher 

achievement in learning the C++ programming language. 

 

The literature review revealed that the van Hiele model of geometric thought may be properly 

modified to apply to the learning and teaching of computer programming because both tasks have 

P
age 15.338.3



many features in common. Based on the study of the van Hiele model and his experiences in 

teaching computer programming, Chen
13

 proposed a modified model as a practical application to 

computer programming as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Modified van Hiele Model for Computer Science Teaching 

 

The modified van Hiele model of computer programming thinking still consisted of three major 

elements: (a) the nature of insight, (b) the levels of thought, and (c) the phases of learning. The 

five-levels of thought of learning computer programming were dubbed: "visual", "descriptive", 

"theoretical", "form logic modification and analogy", and "abstraction and modeling". In addition, 

the five sequential instructional steps, which they assert will take students through a reasoning 

level, will be integrated into the model to help students progress from one level to the next higher 

level. The sequence is shown in outline form below. 

 

1. Information: New topics are introduced through guided dialog. 

A. Teacher assesses student's vocabulary, interpretations, and prior knowledge. 

B. Students learn what direction further study will take. 

2. Directed Orientation: Students explore the topic through activities and materials sequenced by 

teacher. 

A. Much of the material will be short tasks designed to elicit specific responses. 

B. Teacher provides clarification where needed. 

3. Explication: Students refine their conceptualizations and vocabulary. 

A. Students express opinions about the structures observed. 

P
age 15.338.4



B. Students observe relations within the structure. 

C. Teacher moderates student discussion and helps them reach consensus. 

4. Free Orientation: Students are challenged with more complex tasks of problem solving nature. 

A. Students discover new relationships and resolve problems on their own. 

B. Teacher acts as a guide for discovery. 

5. Integration 

A. Students review and summarize their observations forming a synthesis of new concepts and 

relationships. 

B. Teacher provides direct explanations to assist students in refining and internalizing concepts 

and procedures. 

 

The researcher found that instruction in this sequence promoted the acquisition of the next highest 

level in computer programming learning. Common programming mistakes committed by students 

also revealed their faulty explanation stances if these five levels of thought were not modeled 

properly. The five sequential instructional steps will be integrated into the Bayesian model to 

serve as a guiding framework to develop a rich and flexible web-based environment for Teaching 

and Learning Computer Programming languages. 

 

The Cognitive Theory 

 

It is widely known that programming, even at a simple level, is a difficult activity to learn. Why is 

this so? Are novice difficulties really inherent in programming or are they related to the nature of 

the programming tools currently given to novices? Bonar and Soloway
14

 presented evidence that 

current programming languages do not accurately reflect the cognitive strategies used by novice 

programmers. Instead, Bonar and Soloway
14

 have found that novice programmers possess 

knowledge and experience with step-by-step specifications in natural language. This knowledge 

and experience gives them powerful intuitions for using a programming language. Programming 

languages, however, are not designed to appeal to these intuitions. 

 

On a semantic and pragmatic level, there are incompatibilities between the way natural and 

programming languages are used. Many novice programming bugs can be directly traced to an 

inappropriate use of natural language specification style or strategy. 

 

In order to provide a novice with powerful intuitions for using a programming language, the 

researcher represented and arranged programming knowledge according to its level of difficulty 

in four cognitive levels: Lexical and Syntactic, Semantic, Schematic, and Conceptual 
15

.  

P
age 15.338.5



 

l The Lexical and Syntactic levels are self-explanatory. Syntax refers to mistakes in spelling, 

punctuation, and the order of words in a program. Syntax errors are frequently identified by 

the compiler, but the error messages may not give the students the information needed to fix 

the code. 

l The Semantic level (as adapted to the programming domain) deals with the semantics of 

individual statements.  

l The Schematic level, through the use of programming plans, allows multiple statements to be 

grouped into semantically meaningful knowledge units.  

l The Conceptual level deals with definable functions within the problem domain of the 

application being programmed. 

 

A Combined Model  

 

The van Hiele model asserts that the learner moves sequentially through five levels of 

understanding. The Cognitive Theory finds a more natural way to give novice powerful intuitions 

for using a programming language by further representing and dividing programming knowledge 

according to its level of difficulty in four cognitive categories. Figure 2 shows a combined model 

used by the study to represent the knowledge structure of every learning node(concept).  

 

 

 

Figure 2.  Knowledge structure for each learning node 

 

Using Bayesian Networks in Diagnostic Test 

 

The key to aiding students in navigating through knowledge concepts is two-fold. First, the 

structural model
16,17,18,19

 needs to be defined, which means that nodes and links should be 

P
age 15.338.6



identified and modeled. Second, we need to keep track of student knowledge regarding each 

concept node. Bayesian networks can help us meet both of these objectives. 

 

A Bayesian network (BN)
 20,21, 22,23

 consists of directed acyclic graphs (DAG) and a corresponding 

set of conditional probability distributions (CPDs). Based on the probabilistic conditional 

independencies
22, 23

 encoded in the DAG, the product of the CPDs is a joint probability 

distribution. In Bayesian network, conditional probabilities can be defined in terms of 

unconditional probabilities in the product rule. We defined the product rule and pointed out that it 

can be written in two forms because of the commutatively of conjunction: 

 

)()|()(

)()|()(

aPabPbaP

bPbaPbaP

∧?⊃

∧?⊃

 

 

Equating the two right-hand sides and dividing by P(a), we get 

 

)(

)()|(
)|(

ap

bPbaP
abP

∧
?  

 

This equation is known as Bayes' rule (also Bayes' law or Bayes' theorem).This simple equation 

underlies all modern artificial intelligence systems for probabilistic inference. The more general 

case of multivalued variables can be written in the P notation as 

 

)(

)()|(
)|(

XP

YPYXP
XYP

∧
?  

 

where again this is to be taken as representing a set of equations, each dealing with specific values 

of the variables. 

 

A Bayesian network (BN), which consists of directed acyclic graph (DAG) and a corresponding 

set of conditional probability distributions (CPDs) was used in this study to perform the following 

three functions: (1) to construct and validate the course content map represented in DAG format, 

(2) to model the students’ prerequisite information and to guide the student in navigating through 

the programming concepts, and (3) to keep track of student knowledge regarding each concept. 

 

P
age 15.338.7



The Subjects and Bayesian Training Data 

 

This study employs the data generated by sixty freshman students (2 classes) majoring in 

Management Information System (MIS) in the Information Management Department at Southern 

Taiwan University (STUT) and Kun Shan University (KSU). The subjects come from two 

freshman-level Java programming classes with approximately 30 students each. The subjects are 

selected from these two technological universities because they are representative of most 

technological universities in Taiwan.  

 

The diagnostic test plays a critical role in implementing the system. Since the Java curriculum 

content will be further structured into levels and categories based on the combined van Hiele 

model of geometric thought and the Cognitive theory, the computerized diagnostic test has a Java 

curriculum-based structure. Each test for a particular module is structured in topics and questions. 

Three questions at most will be used to represent knowledge of a cognitive category within a van 

Hiele level of understanding.  

 

The Bayesian training data consists of a set of diagnostic test items and the actual answers 

compiled from sixty freshman Information Management majors. This database was selected 

because it is a classic dataset used as evidence for the existence of programming bugs. Since these 

test items are designed to map programming bugs with learning topics, it is highly likely that our 

anticipated bugs will occur in this test set reasonably frequently. Such a design will help to 

conclude robust statistics.   

 

The Study Module  

 

For our purposes, we identified a set of concepts that are taught in our Java programming 

language course at the Southern Taiwan University. Each concept is represented by a node in the 

graph. We add a directed edge from one concept (node) to another, if knowledge of the former is a 

prerequisite for understanding the latter. Thus, the DAG can be constructed manually with the aid 

of the course textbook. For example, consider one instance of the if statement in Java such as 

if((a <= b) && (b <= c)) 

return true; 

else 

return false; 

P
age 15.338.8



 

Even though it is as small as it can be, one can see that the if statement has quite a lot to it. This is 

because Java is a real industry-strength language, and even the smallest portion of a program 

needs some heavyweight ingredients. To understand the if statement, one must first develop some 

basic concept of programming, the Java programming environment, the concepts of data types, 

variable assignment, Relational operators, and logical operators. These relationships can be 

modeled as depicted in Figure 3. Naturally, Figure 3 depicts a small portion of the entire DAG 

implemented in the study. 

 

The next task in the construction of the BN is to specify a conditional probability 

distribution(CPD) for each node given its parents. For variable NRLNi (Next Related Learning 

Node, a child node) with parent set CPItemi (Conditional Probability of ith Item), a CPD 

p(NRLNi|CPItemi) has the property that for each configuration (instantiation) of the variables in 

CPItemi, the sum of the probabilities of NRLNi is 1.0. In Figure 3, the parent set of the if 

statement is {N1-Overview_of_programming, N2-Programming_language, N3-Data_type, 

N4-Variable, N5-Assignment, N6-Relational operators, N7-Logical operators}. The 

corresponding CPD 

P(if statement| N1-Overview_of_programming, N2-Programming_language, 

N3-Data_type, N4-Variable, N5-Assignment, N6-Relational operators, N7-Logical 

operators)  

is shown in Table 1 and Table 2. 

 

All CPDs for the DAG were obtained from the results of the Java Diagnostic Test. We first 

identified the concept being tested for each question. If the student answered the question 

correctly, then we considered the concept known. Similarly, if the student answered the question 

incorrectly, then we considered the concept unknown (not known). The probability of each 

concept being known, namely, p(ai= known), can then be determined. Moreover, we can also 

compute p(ai=known, Pi=known), i.e., the probability that the student correctly answers both the 

concept ai and the prerequisite concepts Pi. From p(ai=known, Pi=known), the desired CPD 

p(ai=known | Pi=known) can be obtained. Thereby, we can calculate every CPD for the entire 

Bayesian network. 

 

 

P
age 15.338.9



 

 

Figure 3  Sub-DAG for the if statement 

 

 

P
age 15.338.10



 

Table 1. The CPD corresponding to the if-statement nodes within  

a van Hiele level 

CP 

Item 
Known NRLN P(NRLN) 

CP 

Item 

Number 

NRLN 

Number 
P(NRLN | CP_Item) 

N2L0 Y N2L1 48 16 0.333333333 

N2L0 N N2L1 

0.310344828 

10 2 0.2 

N2L1 Y N2L2 18 10 0.555555556 

N2L1 N N2L2 

0.448275862 

40 16 0.4 

N2L3 Y N3L0 6 4 0.666666667 

N2L3 N N3L0 

0.310344828 

52 14 0.269230769 

N3L0 Y N3L1 18 10 0.555555556 

N3L0 N N3L1 

0.275862069 

40 6 0.15 

N4L0 Y N4L1 8 2 0.25 

N4L0 N N4L1 

0.137931034 

50 6 0.12 

N4L1 Y N4L2 8 4 0.5 

N4L1 N N4L2 

0.137931034 

50 4 0.08 

N5L1 Y N5L2 18 16 0.888888889 

N5L1 N N5L2 

0.448275862 

40 10 0.25 

N5L2 Y N5L3 26 16 0.615384615 

N5L2 N N5L3 

0.344827586 

32 4 0.125 

N4L3 Y N6L0 8 6 0.75 

N4L3 N N6L0 

0.724137931 

50 36 0.72 

N6L0 Y N6L1 42 32 0.761904762 

N6L0 N N6L1 

0.655172414 

16 6 0.375 

N8L1 Y N8L2 18 14 0.777777778 

N8L1 N N8L2 

0.342926863 

40 6 0.15 

N8L2 Y N8L3 20 18 0.9 

N8L2 N N8L3 

0.412382567 

38 6 0.157894737 

 

The Categorical Sequence of the van Hiele Model  

 

Figure 4 is a graphical representation of the results generated in Table 1. For example, the first 

piece of graph in Figure 4 indicates that students who mastered the prerequisite (N2L1) of N2L2 

P
age 15.338.11



have better chance to pass N2L2 (cp(.N2L2| N2L1)= 0.555555556). The cp value is much higher 

than cp value for students who did not master the prerequisite (N2L1) of N2L2 but passing N2L2 

test (cp= 0.4). The Bayesian network data validates the statement that instruction in this sequence 

promoted the acquisition of the next higher category in a van Hiele level in computer 

programming learning. This further testifies that Bayesian networks are useful for both inferential 

exploration of previously undetermined relationships among variables as well as descriptions of 

these relationships upon discovery. 

 

 

Figure 4. The DAG representation of Figure 2 

 

The researcher found that instruction in this sequence promoted the acquisition of the next higher 

level in computer programming learning. Common programming mistakes committed by students 

also revealed their faulty explanation stances if these five levels of thought were not modeled 

properly. The five sequential instructional steps will be integrated into the proposed combined 

model to serve as a guiding framework to develop a rich and flexible web-based environment for 

Teaching and Learning Computer Programming languages. 

 

The Level Sequence of the van Hiele Model 

 

Table 2 shows the CPD corresponding to the if-statement nodes across van Hiele levels. Figure 5 

is a graphical representation of the results generated in Table 2. For example, the second piece of 

graph in Figure 5 indicates that students who mastered the prerequisite (N2L3) of N3L0 have  

 

 

P
age 15.338.12



Table 2  The CPD corresponding to the if-statement nodes  

across van Hiele levels 

CP 

Item 
Known NRLN P(NRLN) 

CP 

Item 

Number 

NRLN 

Number 
P(NRLN | CP_Item) 

N1L0 Y N1L0 0.655172414 58 38 0.655172414

N1L0 Y N2L0 38 34 0.894736842

N1L0 N N2L0 

0.827586207

20 14 0.7

N2L2 Y N2L3 26 2 0.076923077

N2L2 N N2L3 

0.103448276

32 4 0.125

N2L3 Y N3L0 6 4 0.666666667

N2L3 N N3L0 

0.310344828

52 14 0.269230769

N4L2 Y N4L3 8 0 0

N4L2 N N4L3 

0.137931034

50 8 0.16

N4L3 Y N5L0 8 2 0.25

N4L3 N N5L0 

0.310344828

50 16 0.32

N4L3 Y N6L0 8 6 0.75

N4L3 N N6L0 

0.724137931

50 36 0.72

N6L2 Y N6L3 32 12 0.375

N6L2 N N6L3 

0.275862069

26 4 0.153846154

N6L3 Y N7L0 16 14 0.875

N6L3 N N7L0 

0.517241379

42 16 0.380952381

N7L2 Y N7L3 0 0 0

N7L2 N N7L3 

0.103448276

58 6 0.103448276

N5L2 Y N5L3 26 16 0.615384615

N5L2 N N5L3 

0.344827586

32 4 0.125

N5L3,

N7L3 
Y,Y N8L0 4 2 0.5

N5L3,

N7L3 
N,Y N8L0 2 0 0

N5L3,

N7L3 
Y,N N8L0 16 6 0.375

N5L3,

N7L3 
N,N N8L0 

0.264301757

36 8 0.222222222

 

P
age 15.338.13



better chance to pass N3L0 (cp(.N3L0| N2L3)= 0.666666667). The cp value is much higher than 

cp value for students who did not master the prerequisite (N2L3) of N3L0 but have passed N3L0 

test (cp= 0.269230769). Every piece of graph in Figure 5 will testify a level sequence case 

appeared in Figure 3. The Bayesian network data again can validate the statement that instruction 

in this level sequence promoted the acquisition of the next higher level knowledge in a van Hiele 

model for computer programming learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  The DAG representation of Table 2 

 

From the structure of the knowledge base and the local distributions learned from the data (Table 

1 and Table 2), a BN is automatically built to infer if each topic is learned and infer the next topic 

to be learned.  

 

Causal Bayesian Networks 

 

A causal Bayesian network is a Bayesian network where the directed arcs of the graph are 

interpreted as representing causal relations in some real domain. The directed arcs do not have to 

be interpreted as representing causal relations; however in practice knowledge about causal 

relations is very often used as a guide in drawing Bayesian network graphs, thus resulting in 

causal Bayesian networks. 

 

P
age 15.338.14



In Figure 5, there are two possible children nodes, N5L0 and N6L0, for students to learn once they 

have passed the N4L3 test. By comparing the two cp’s values along the directed arcs, one can 

suggest the next reasonable learning path for the student. Looking up Table 2, it can be observed 

that  

  

25.0)34|05( ?LNLNP  and  

0.75)34|06( ?LNLNP ,  

and since 0.75 > 0.25,  

 

therefore, the next learning node to be dispatched is N6L0 because the relationship between N4L3 

and N6L0 is more solid than that of N4L3 and N5L0. 

 

Bayesian Networks for Diagnostic Applications 

 

N8L0 has two parent nodes, N5L3 and N7L3. If a student fails to pass N8L0, we are in an 

embarrassing state to determine the failure of passing which node (N5L3 or N7L3) has strong 

causal relationship to interpret the failure of N8L0.  

 

and,           60.70306186
735698243.0

655172414.019/15

)08(

)35()35|08(
)08|35(

?
,

?

?

LNP

LNPLNLNP
LNLNP

 

 90.53402366
896551724.0

655172414.026/19

)08(

)37()37|08(
)08|37(

?
,

?

?

LNP

LNPLNLNP
LNLNP

 

 

Since and, 60.70306186)08|35( ?LNLNP  90.53402366)08|37( ?LNLNP , the BN can 

draw a conclusion to state that there is a greater possibility that the failure to master N5L3 result 

in the failure of N8L0 learning. 

 

The DAG (directed acyclic graph) of Java Curriculum Content 

 

Once the training data have been further analyzed and examined, a complete Java curriculum 

P
age 15.338.15



content and instruction sequence can be determined. Figure 6 is a DAG representation of the 

entire Java Curriculum Content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The directed acyclic graph of Java Curriculum Content 

 

A diagnostic test constructed based on the suggested curriculum structure will have good chance 

P
age 15.338.16



to be employed as the base to build an intelligent tutoring system for learning Java language. 

 

 

A Practical Model for Applications 

 

To help engineering educators wisely utilize the information described in this paper, we suggest 

the following approach be taken to design sound curriculum content and sequence: 

1.  Hold an expert roundtable discussion to roughly determine a set of knowledge concepts 

required for a course.  

2.  Manually construct the course DAG similar to Figure 6 with the aid of the course textbook. 

3.  Develop a diagnostic test to have test questions which cover every cognitive category for 

every level of understanding in the entire curriculum structure as shown in Figure 3.  

4.  Extensively conduct the test and collect sufficient Bayesian training data. 

5.  Analyze and use the Bayesian training data to trim the unrelated content and adjust the logical 

sequence for learning. Once the process is completed, a new course DAG similar to Figure 6 

will be produced. 

6.  Group the related knowledge concepts into chapters according to their sequences appearing on 

the course DAG. 

 

The approach formulated in this paper encompasses the van Hiele Model, the cognitive model, 

and Bayesian network, which has proven to be a successful model for educators and content 

experts to design a pedagogically sound curriculum content and sequence for students to 

intelligently navigate in any online course material.  

 

Conclusions and Future Work 

 

This paper discusses a new architecture of designing a van Hiele-based intelligent tutoring system 

for computer programming using Bayesian technology. The main focus is centering on the 

explicit curriculum structure and the way to use Bayesian training data for diagnostic and 

recommending purposes. We described the theory and implemented the prototype of the 

suggested system. The current study is designed to be able to: (1) demonstrate a measurement 

scheme to detect misconceptions employed by the students, and (2) provide a convenient 

descriptive tool for diagnosing students' programming abilities by representing a set of bugs in the 

networks. More specifically, by utilizing Bayesian network techniques in modeling the 

programming bugs, this study will help us to design a complete Java curriculum content and 

instruction sequence. 

P
age 15.338.17



 

The system provides remote access to take the diagnostic test and based on the overall picture of 

the test result, the system will provides the learner with intelligent navigation support, 

recommendation, and integrates the features of an electronic hypermedia textbook with intelligent 

tutoring tactics. The system can propose learning goals and guide users by generating reading 

sequences for them. 

 

Future work will involve incorporating the more sophisticated concepts of Java into the system. 

We also hope to extend the suggested system by incorporating other programming languages such 

as C++ and MS Visual Basic. 

 

Acknowledgement 

 

This work is funded by the National Science Council in Taiwan, under the “Science Education” 

Program, Project No. NSC 97-2511-S-218-005-MY2. 

 

 

 

 

Bibliography 

 

1.  Allen Tucker. (2003). A Model Curriculum for K-12 Computer Science. Final Report of the ACM K-12 

Education Task Force Curriculum Committee. ACM. 

2.  Bransford, J.D., Brown, A.L., and Cocking, R.R.(2000). How People Learn: Brain, Mind, Experience, and 

School. Washington, D.C.:National Academy Press. 

3.  Resnick, M. (1995). New paradigms for computing, new paradigms for thinking. In A. diSessa, Hoyles, C., & 

Noss, R. (Eds.), Computers and Exploratory Learning (pp. 31-43). New York: Springer-Verlag. 

4.  Papert, S. (1980). Mindstorms: children, computers, and powerful ideas, Basic Books. 

5.  Ebrahimi, A. (2008) Empirical study of errors by novice programmers and design of visual plan construct 

language (VPCL) Polytechnic University, Brooklyn, New York. 

6.  Kanemune, S., Nakatani, T., Mitarai, R., Fukui, S., and Kuno, Y. (2004). Dolittle - Experiences in Teaching 

Programming at K12 Schools. The Second International Conference on Creating, Connecting and Collaborating 

through Computing, IEEE, pp. 177-184.  

7.  Kelleher, C. & Pausch, R. (2005). Lowering the Barriers to Programming: a survey of programming 

environments and languages for novice programmers, ACM Computing Surveys.  

P
age 15.338.18



8.  Chen, J. & Lin, C. (2006). A van Hiele Web-based Learning System with Knowledge Management for Teaching 

Programming, Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies 

(ICALT2006), pp. 114-116. 

9.  van Hiele, P. M. (1986).  Structured and insight: a theory of mathematics education.  Orlando, Fl: Academic 

Press. 

10.  Crowley, M. L. (1987).  The van Hiele model of the development of geometric thought.  In M. Lindguist & A. 

Shutle (eds.), Learning and teaching geometry, K-12, (1987 Yearbook of the National Council of Teachers of 

Mathematics) (pp. 1-16). Reston, VA: NCTM. 

11.  Ehrlich, K.,  Soloway, E.,  & Abbott, V. (1982).  Transfer effects from programming to algebra word 

problems: A preliminary study (Rep. No. 257) New Haven: Yale University Department of Computer Science. 

12.  Soloway, E., Lockhead, J., & Clement, J. (1982).  Does Computer programming enhance problem solving 

ability? Some positive evidence on algebra word problems.  In R. Seidel, R. Anderson, & B. Hunter (EDs.) 

Computer literacy, New York: Academic Press.   

13.  Chen, J. (2005).Designing a Web-based van Hiele Model for Teaching and Learning Computer Programming to 

Promote Collaborative Learning, The 5th IEEE International Conference on Advanced Learning Technologies 

(ICALT2005), pp. 163-166.  

14.  Bonar, J. & Soloway, E. (2001). Uncovering Principles of Novice Programming  Proceedings of the 10th ACM 

SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 10 – 13. 

15.  Liffick, B. & Aiken R. (1996) A novice programmer's support environment. Proceedings of the 1st conference on 

Integrating technology into computer science education, Volume 28 , 24 Issue SI , 1-3. 

16.  E. Millán, M.Trella, J.L. Pérez-de-la-Cruz and R. Conejo. (2000). Using Bayesian Networks in Computerized 

Adaptive Tests. In Manuel Ortega and José Bravo (eds.): Computers and Education in the 21st Century, Springer 

Netherlands, pp. 217-228. 

17.  Millán, E., & Pérez-de-la-Cruz, J. L. (2002). A Bayesian Diagnostic Algorithm for Student Modeling and its 

Evaluation. User Modeling and User Adapted Interaction, 12, 281-330. 

18.  Millán, E., Pérez-de-la-Cruz, J. L., & Suárez, E. (2000). An Adaptive Bayesian Network for Multilevel Student 

Modelling. In Lecture Notes in Computer Science 1839. Proceedings of 3rd International Conference on 

Intelligent Tutoring Systems ITS´2000 (pp. 534-543). Berlin Heidelberg: Springer Verlag. 

19.  Fenton, N. E. and Neil, M. (2001), Making Decisions: Using Bayesian Nets and MCDA. Knowledge-Based 

Systems, Vol. 14(7), pp. 307-325. 

20.  Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan 

Kaufmann, San Mateo, CA. 

21.  Wong, S.K.M. and Butz, C.J. (2001). Constructing the Dependency Structure of a Multi-Agent Probabilistic 

Network, IEEE Transactions on Knowledge and Data Engineering, 13(3): pp. 395-415. 

22.  Butz, C.J., Hua, S. and Maguire, R. (2006). A web-based bayesian intelligent tutoring system for computer 

programming, International Journal on Web Intelligence and Agent Systems, 4, pp. 61–81. 

P
age 15.338.19



23.  Wong, S.K.M., Butz, C.J, and Wu, D. (2000). On the Implication Problem for Probabilistic Conditional 

Independency, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 30(6), 

pp.785-805. 

P
age 15.338.20


