
AC 2007-356: CUSTOM PROCESSOR USING AN FPGA FOR UNDERGRADUATE
COMPUTER ARCHITECTURE COURSES

Jonathan Hill, University of Hartford
Dr. Jonathan Hill is an assistant professor in the College of Engineering, Technology, and
Architecture (CETA) at the University of Hartford, Connecticut (USA). Ph.D. and M.S. from
Worcester Polytechnic Institute (WPI) and B.S. from Northeastern University. Previously an
applications engineer with the Networks and Communications division of Digital Corporation.
His interests involve embedded microprocessor based systems. 

© American Society for Engineering Education, 2007

P
age 12.438.1



 

Custom Processor Using an FPGA for 

Undergraduate Computer Architecture Courses 

 

 
Abstract 
 
The field programmable gate array (FPGA) and modern computer aided design tools provide 
new opportunities in teaching computer architecture.  This paper presents a simple yet nontrivial 
Von Neumann style computer architecture and corresponding implementation suitable for an 
undergraduate course in computer architecture.  The processor architecture itself is worthy of 
study, including such features as subroutines, stack relative addressing, interrupts, and 
conditional branching.  The processor is able to pre-fetch with some instructions and provides 
performance comparable to traditional small microprocessors such as the Motorola/Freescale 
68HC11.  The architecture and implementation documents are written so that several options are 
possible for introducing nod4 into the classroom curriculum.  In particular, students may 
investigate the nod4 processor or implement the processor themselves.  It is also possible to 
present the processor architecture entirely without the implementation.   
 
Introduction 

 
This paper presents a simple yet nontrivial Von Neumann style computer architecture and 
corresponding implementation that undergraduate students may implement as a soft-core 
processor.  Engineers are continually called upon to make decisions regarding what is 
appropriate for a given application.  The grand vision serves as a north-star to inspire and help 
the designer in making decisions regarding a given architecture.  The nod4 processor is designed 
to be a tool for teaching introductory computer architecture principles to undergraduates. The 
nod4 motto is, “simple yet nontrivial.”  It is classic accumulator based Von Neumann style 
architecture.  The design strives for clarity and is transparent so nothing is hidden from the 
student.  It has an 8 bit address bus and primarily supports unsigned 8 bit integer math. 
 
Relevant references include Mano and Kime1 as well as Tanenbaum2.  To implement nod4 the 
target technology is the field programmable gate array (FPGA).  Other than switches, light 
emitting diodes, and the clock oscillator, the nod4 processor system is implemented entirely in a 
FPGA.  Students are provided with VHDL modules used to make schematic symbols.  In this 
way students use register level or higher schematics.  The development tools include a simulator 
for examining the system cycle by cycle behavior. 
 
Providing support to software is an important concern to processor design.  Compiler generated 
machine code makes use of only a few addressing modes and is generally supported by certain 
processor hardware features.  The nod4 architecture has a stack, uses subroutines, and includes 
stack relative addressing which helps in passing parameters.  Other than the possibility of a very 
simple executive, we have no interest in supporting a formal operating system.  At the very least, 
to perform a context switch requires direct access to the processor stack. 
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Performance means something different for each application we consider.  In executing simple 
demonstration programs nod4 strives for a respectable level of performance comparable to such 
classics as the Motorola/Freescale 68HC11 microcontroller.  As outlined by Tanenbaum, to 
avoid expressing the fetch-execute cycle as a binary tree, the microcode is aided with jump-
ahead rules. Also, in fetching an instruction, two bytes are read from memory, allowing some 
instructions to pre-fetch the following opcode.  With nod4 students are exposed to such classic 
metrics as cycles per second, average cycles per instruction, and integer operations per second. 
 
Students are first presented the nod4 architecture document3 which focuses primarily on the 
assembly language view of the processor.  At roughly midterm, students start with the nod4 
implementation document4.  In other courses having a focus only on the architecture, the 
processor can be presented without the implementation.  Courses with a lack of development 
tools can use the implementation document for reference.  With the development tools on hand, a 
project can be assigned to actually implement the project.  Otherwise, students could possibly 
use an existing implementation to investigate the nod4 processor, considering changes to the 
nod4 architecture and implementation.  There are many opportunities such as adding peripherals, 
new instructions, and addressing modes.  Each document includes homework exercises. 
 
The nod Series History 

 
For my first computer architecture course I wrote a hypothetical microprocessor architecture 
called nod1, which was simply meant to serve as an example.  To my surprise I discovered its 
value in teaching.  I found the instruction set and encoding worthy of discussion, serving to 
contrast with text-book examples.  The assembly language and addressing modes are educational 
without being a burden.  Such an example is a benefit in its own right and for this I produced an 
improved version called nod2 which I used the second and third time I taught the course.   
 
With nod1 and in later semesters with nod2, students had a project to write a simulator program 
to model the architecture behavior.  In reviewing feedback, the students felt that while the 
architecture itself was useful, the corresponding simulator project was too abstract.  I was also 
concerned that the simulator did not fully help to convey a sense of the fetch-execute cycle.  It 
seems that anything less than an actual implementation would not be acceptable.  
 
After deciding to have an actual implementation, I considered a number of factors and made 
some decisions and refining nod2 led to nod3.  Given the prior student feedback, I introduced 
nod3 as example architecture in the same manner that I introduced nod1 as well as nod2.  Later 
in the course, students actually implemented nod3.  In the following year, the latest refinement 
led to the current nod4 processor. 
 
I cannot require my computer architecture students to know a hardware description language like 
VHDL and I feel that pure schematic capture techniques are too intensive in this regard.  I 
selected a hybrid approach where students use pre-written VHDL modules to define the blocks in 
a schematic.  In this way students encounter higher-level schematics and for simulation write 
simple test-bench files.  This is similar to using MSI parts in that the underlying VHDL code 
describing the behavior is already provided. Students perform simulation and once ‘things look 
good,’ the design can be configured into a field programmable gate array. 
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The nod4 Architecture 

 
To introduce nod4 to students we start with a fairly abstract view, presenting the registers, 
assembly language, and encoding.  The nod4 architecture has an 8-bit data path and an 8-bit 
address bus.  From the programmer’s point of view nod4 has the following CPU registers 
 

• A – accumulator 

• C – condition code register (Z,C,I) 

• S – stack pointer 

• X – index register 

• PC – program address counter 
 
The A register is primarily for handling data.  The C register contains the zero flag (Z), 
carry/borrow flag (C), and the interrupt enable flag (I).  The stack pointer maintains the stack 
data structure.  The X register is a fairly general purpose index register.  The program counter 
(PC) can be thought of as referring to the next instruction however due to pre-fetching has a twist 
discussed later, that the assembly language programmer is less concerned with. 
 
Students typically resist the notion that data is accessed by address.  The syntax here is inspired 
by the Borland Turbo Assembler (TASM) ideal-mode syntax5, which is more intuitive than most 
and is helpful in this regard.  In particular, square brackets imply the contents of the address, 
which makes the syntax for the addressing modes almost self explanatory.   
 
To avoid having to memorize a numeric value, the assembler accepts symbols, or symbolic 
names for values.  A label is like a symbol, but the value it represents must be an address.  The 
assembler determines the actual value assigned to each label.  An assembly language program is 
written in lines of text, each with as many as four fields.   
 

• The left-most field contains a label, symbol, or semicolon to start a comment line.  Each 
label or symbol ends with a colon ‘:’. 

• The second field contains either a mnemonic or an assembler directive which is a 
command directed at the assembler 

• The third field, called the operand field may contain instruction data which is dependent 
on the addressing mode, or data for an assembler directive 

• The fourth field is for comments and starts with a semicolon ‘;’. 
 
The effective address or EA is the location for a memory data access.  Four addressing modes are 
supported, namely implied, immediate, direct, and indexed.  With implied addressing (IMP) 
there is no operand however as with push and pop the EA is implied.  An immediate instruction 
(IMM) follows the mnemonic by the required data.  With direct addressing the mnemonic is 
followed by the EA.  With index addressing the EA is calculated by adding an offset value 
following the mnemonic to the corresponding index register (S or X).  The following is the 
general format for lines in an assembly language program 
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A directive or pseudo-instruction is an explicit command directed at the assembler.  The 
following are the directives, presented in context: 
 

 
 
The nod4 Instruction Encoding 

 
The first part of an actual machine code instruction is called an opcode.  The means by which an 
opcode conveys an action, addressing mode, and the registers involved is called the encoding.  
The nod4 encoding is meant to contrast with the principle of the expanding opcode presented by 
Tanenbaum2.  The nod4 instruction encoding is formulated from Table 1.  The headings IMP, 
IMM, DIR, and IND refer to implied, immediate, direct, and index addressing modes, 
respectively. The headings A, C, S, and X refer to the corresponding registers.  The ‘–’ symbol 
means use of an item without a choice and ‘o’ means a choice among items.  Instruction 
mnemonics use the nameR format where R may refer to a source or destination register.  
Instructions not ending with R either imply or otherwise do not refer to any registers. 
 

; here is a comment line 

Label:  mnemonic   Operand  ; comment text 

Symbol: directive  Data     ; another comment 

ORG   Address 

Sets the current point of assembly to ‘Address’ 
 

symbol:  equ   val 

The symbol is assigned the constant value ‘val’. 
 
label:   FCB   val1, val2,… 

Inserts successive byte values into memory.  The address of the first or left 
most value is assigned to the label 

 
label:   RMB   n 

Reserves n bytes without inserting any values.  The address of the first byte 
reserved is assigned to the label. 
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Table 1: Instruction distribution 
  Addressing Modes Registers 
Mnemonic & Behavior IMP IMM DIR IND A C S X 

clra clear A –    –    
inva ones comp. A –    –    
nega negate A –    –    
rts return from sub. –      –  
rti return from int. –    – – – – 
swi software int. –    – – – – 
pshR push R –    o o – o 
popR pop to R –    o o – o 
decR decrement R –    o  o o 
incR increment R –    o  o o 
jsr jump to sub.  –     –  
jmps(7) jumps – t total  –       
andR bitwise-and w. R  o o o o o  o 
cmpR compare w. R  o o o o o  o 
orR bitwise-or w. R  o o o o o  o 
addR add to R  o o o o  o o 
stR store R   o o o  o o 
subR subtract from R  o o o o  o o 
ldR load into R  o o o o  o o 

 
The encoding is not orthogonal and takes advantage of patterns in the instruction distribution.  
Note that certain registers are sometimes excluded.  There is no point in incrementing or 
decrementing the condition code register C or pushing or popping the S register.  In examining 
the instruction distribution we make several observations: 
 

• The register choices are indicated with three patterns, either none, the set A, C, and X 
(ACX), or the set A, S, and X (ASX). 

• The jump instructions only use immediate addressing with no choice of registers 

• Mnemonics that write to memory only make use of direct and indexed addressing modes 
 
The following outlines the encoding.  The items ACX and ASX refer to a two bit code that 
references one of the given registers.  The item mmn refers to the addressing mode.  The ‘x’ 
symbol indicates a bit involved in selecting an instruction from the group. 
 

Table 2: Instruction Encoding Summary 
   Register Choices  Addressing Mode 
Opcode Formats  Reg. Encoding  Modes mmn 

1. 0 ACX mmn xx  A 0 0  IMP 0 0 x 
2. 0 10  mmn xx  C 0 1  IMM 0 1 x 
3. 1 ASX mmn xx  S 1 0  DIR 1 0 x 
4. 1 01  mmn xx  X 1 1  IND-S 1 1 0 
      IND-X 1 1 1 
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Example Program 

 
The following program illustrates the assembly language as well as many of the architecture 
features.  The system has ROM from addresses $00 to $BF and RAM from $C0 to $FD.  The last 
two addresses are for the input and output ports.  The first two addresses in memory are reserved 
for storing the program start address (PSA) and program interrupt address (PIA).  Without an 
interrupt service routine, it is wise to use the PSA as the PIA so that an accidental interrupt will 
restarts this system.   The first appearance of each addressing mode type is indicated in the 
comment field, as in IMM, IND, IMP, and DIR.  The push instruction decrements the S register 
before writing to memory, so that the subroutine return address is written to address $FD.  
Before returning, the final value is written for display to the output port.  To take this example 
further, consider the online documention3. 
 

 
 

; ex0.asm – demo nod4 program 

TOS:    EQU  $FE          ; top of stack 

OUTP:   EQU  $FF          ; output port 

        ORG  $00          ; set origin 

        FCB  Start, Start ; PSA, PIA 

 

Start:  lds  TOS          ; (IMM) init. stack 

        ldx  List         ; address of val.         

        jsr  Absval       ; call sub. 

Done:   jmp  Done         ; all done 

 

Absval: lda  [X+0]        ; (INDX) get val. 

        cmpa $80          ; compare endval 

        jlo  Posval       ; already pos? 

        nega              ; (IMP) form opposite 

Posval: sta  [OUTP]       ; (DIR) store val 

        rts               ; sub. Done 

List:   FCB  $37          ; a value 
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The nod4 Implementation 

 
The microprocessor designer looks at a microprocessor in a different way than the assembly 
language programmer.  Figure 1 is the classic Von Neumann structure I had in mind when I 
designed the nod4 system.  The memory contains executable code and data.  The controller 
produces enable signals to control the actions of the data path, which in return produces status 
information.  Here the input and output (I/O) devices are said to be memory mapped in that the 
devices are also accessed by address.  In the following, each block is considered in turn. 
 

I/O

CONTROLLER

Enables

DATA PATH

Status

ReadEn

WriteEn

Address

Data

M
E

M
O

R
Y

 
Figure 1: Processor system overview 

 
Memory systems is a topic that itself is worthy of several lectures.  Students learn from the 
architecture document3 that the nod4 memory map has three regions comprised of ROM, RAM, 
and device registers.  They also learn that ROM is suitable for permanent executable code and 
constant data, and that RAM is suitable for variables and the stack.  Device registers provide 
access to the peripheral devices.  
 
For discussions of memory types and memory maps to be more than a simple exercise, students 
learn about what a simple memory bus is, what address decoding is, and how a memory access is 
performed.  In studying the nod4 implementation, students discover how each region is a 
manifestation of a device, on a bus, mapped by the address-decode logic, to a range of addresses.  
Besides memory, so-called memory mapped peripheral devices are accessed by address, as part 
of the memory system.  These are general principles that aid further learning.  With an 
understanding of the basics, students can appreciate more advanced memory systems. 
 
Figure 2 is the nod4 memory system.  Each block corresponds to a small bit of VHDL code that 
students are welcome to explore.  Unlike symbols that refer to conventional discrete logic 
devices, these symbols are simply part of a larger description.  A key point with FPGAs is being 
able to tailor to an application.  While a 192 byte ROM or a 64 byte RAM may not be practical 
by itself as a discrete device, the FPGA has the necessary resources.  The VHDL tools simply 
allocate the required FPGA resources and automatically route the corresponding logic.   
 

P
age 12.438.8



 
Figure 2: Memory system for nod4 

 
In Figure 2 the signal AX is the address bus, which conveys the address for a memory system 
access. The signal DX is the bidirectional data bus.  This bidirectional nature is made possible by 
three-state logic buffers present in each device attached to the bus.  Devices share the data bus as 
well as the read (RD) and write (WR) control lines.  Enables are produced so that each device 
appears in only one region of memory.  The memory used to construct the RAM is called 
asynchronous-read, synchronous-write and is similar to conventional static RAM, except that a 
write, as in Figure 3 is committed at the rising clock edge.  As with static RAM, in performing a 
read from memory as in Figure 4 there is a delay to the arrival of valid data.  Students can 
consider different ways to implement the enable logic. 
 

DX[7:0]

CLK

Z Z

WR

ADDRESS

DATA

AX[7:0]

 
Figure 3: Memory write cycle 

DX[7:0] Z Z

ADDRESS

DATA

RD

CLK

AX[7:0]

 
Figure 4: Memory read cycle 

 
The data path in Figure 5 is what performs the work of the microprocessor.  The data path 
includes all the visible registers, hidden registers, arithmetic logic unit, and all the so called 
interconnect plumbing including multiplexers.  The temporary register (ND) and instruction 
register (IR) are said to be hidden from the assembly language programmer’s view.  The action 
of the data path is directed by enable signals (not shown here) produced by the controller.  The 
arithmetic logic unit (ALU) is the real worker in the data path.  Students learn that the so-called 
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program counter (PC) is not a counter.  In return, the data path provides the controller with status 
information in the form of the values in the C and IR registers. 
 

MUX MUX

ALU

M
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X BUS
ADDRESS
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BD

Y
alu_bus

Flags
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C
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X

BUS
DATA

DX
IR

ND
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Figure 5: The nod4 data path 

 
In performing a read from memory either the ND or IR register loads the value.  Care is taken so 
that the actual value fetched is only used inside the data path, once it is actually loaded in a 
register.  Using a buffer register in this way, so that the data bus is not directly inspected by logic 
is significant.  This means that the fetch and decode phases of the fetch-execute cycle will not be 
combined.  This is an elementary form of pipelining, though we normally do not think of it that 
way.  Doing so shortens the overall read path and allows for a higher clock frequency. 
 
The controller is essentially a state machine the uses status information to direct the actions of 
the data path, to provide the desired cycle-by-cycle behavior.  Based solely on the controller, it is 
possible to cause the behavior of the data path to be like that of an entirely different processor.  
The processor controller is microcoded to both emphasize how the fetch-execute cycle behaves 
like and interpreter, and also to provide opportunities to experiment with the implementation.  
Students can also consider the performance of instructions by counting microcode instructions. 
 
Figure 6 outlines the microcode by representing related blocks of code as states.  The actual 
microcode is listed in the nod4 implementation document4.  Starting at init, the program start 
address or PSA is loaded in the PC register.  In fetch2 the opcode is decoded and a second byte is 
fetched from memory.  With the opcode and the following byte fetched, implied and immediate 
type instructions can be executed.  Direct and indexed instructions access data at the 
corresponding effective address or EA.  The access-EA code calculates the effective address 
(EA) as necessary and reads or writes data at the EA.  Once executed, as necessary the interrupt 
code prepares for an interrupt.  
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Figure 6: Microcode overview 

 
In starting at fetch1, the first instruction has two fetches performed.  For immediate, direct, and 
extended addressing instructions, fetch2 obtains the operand.  For implied instruction however, 
the fetch2 produces the next opcode so that most implied instructions treat the second fetch as a 
pre-fetch.  In pre-fetching the next opcode, the current implied instruction or the next instruction 
can be thought of as executing in one less clock cycle.   
 
The use of two fetches follows our motto of “simple yet nontrivial.”  The choice to arbitrarily 
fetch two bytes in sequence from memory in this fashion has less to do with implied instructions, 
and more to do with the rest.  By immediately fetching a second byte, regardless of addressing 
mode, the microcode is simpler and no time is used to decide if a second fetch is required, so all 
instructions execute faster.  The idea of pre-fetching and having implied instructions execute 
faster yet is a happy coincidence. 
 
The downside is that the exact meaning of the PC register is less clear.  Once fetch2 is complete, 
PC contains the address of the current opcode plus two, which could be the next instruction or 
the one after that.  Thus the PC is more of a fetch counter.  Normally this is not a problem as we 
know the situations where the PC is expected to refer to the next opcode in memory.  All jump 
instructions are two bytes long so that in executing a jump to subroutine (JSR) instruction, the 
PC refers to the return address, and will properly be pushed onto the stack.  In invoking an 
interrupt, the previous completed instruction may not be two bytes long.  In completing an 
implied instruction, the pre-fetching must be first be undone before jumping to the interrupt 
service routine (ISR), so that the correct return address is pushed onto the stack. 
 
Considering Student Feedback 

 

Prior to nod3, the standard college course questionnaire asked students a number of detailed 
questions that provide students with opportunities to make comments.  Based on these comments 
I discerned that many students felt the nod processor architecture was helpful but that writing a 
simulator program was too abstract.  Because of the feedback I was motivated to have students 
actually implement nod series processors.  More recently a questionnaire was e-mailed out to 
students who completed the course and from a typically small course, a smaller response was 
received.  Two studied nod2, three studied nod3, and two studied nod4.  Despite that two of the 
students wrote the nod2 simulator program, their responses were very similar to those who 
implemented at least a significant part of a nod3 or nod4 processor.  Some questions asked 
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students to reply with a numerical answer and others asked for a statement.  Students were also 
welcome to make any comments they wished. 
 

0 Disagree 
Strongly 

1 Disagree 2 Neutral or 
Indifferent 

3 Agree 4 Agree 
Strongly 

 
The questions are listed below along with the average values. Questions 2 and 4 are similar and 
are a general gauge of student satisfaction with the nod series processors.  Other than one 
student, who in question 2 indicated indifference, all students at least agreed and on average 
moderately strongly agreed that the nod series is helpful and helped their understanding. 
 
Questions 5 and 6 are contrasting in that I was concerned with the size of the project.  Question 5 
asks if there is educational value in the exercise.  Of all the questions, number 5 has the highest 
score.  In contrast, question 6 proposes that students be given a completed nod series processor to 
study.  I am surprised by the cool response and that on average there is a slight disagreement 
with the question.  Two students gave similar comments that their learning resulted from having 
to complete either the simulator or actual implementation.   
 
Undergraduate computer engineers take this course, and it appears that implementing such a 
microprocessor is welcome and may account for the cool reply to question 6.  Perhaps having a 
completed system available would make nod4 more accessible to other students as well.  In 
particular, straight electrical engineering students and computer science majors may benefit. 
 

 Question Average 

1. Which nod series processor did you study? – – 

2. Overall the nod processor helped to introduce computer architecture 
related topics and is a benefit to the ECE335 class in itself.  Also list a 
topic that nod4 helped your understanding 

3.429 

3. Is there a computer architecture topic that nod4 can be used to better 
introduce? 

– – 

4. The nod4 processor implementation or architecture helped me to better 
understand the internals of microprocessors and the fetch-execute cycle 

3.571 

5. The nod3 and nod4 processors involved having students implement a 
significant part of a microprocessor.  Do you see this exercise as having 
educational value? 

3.714 

6. Suppose that rather than having students implement a complete4 
processor, a completed processor was provided to students to study in 
detail.  Having such a completed would further improve my 
understanding of microprocessors. 

1.714 

 
In examining the comments made to questions 2 and 3, students indicated that yes, the nod series 
processors helped in their understanding of what a data path is, what micro-coding is, and what 
instruction encoding and decoding is. One student asked that some method be used for nod4 to 
introduce larger computers.  Another student commented that if additional material is added to 
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the course, then nod4 would probably find even more use.  To summarize, the feedback for the 
nod series processors is positive.   
 
Conclusion 

 
The field programmable gate array (FPGA) and modern computer aided design tools provide 
new opportunities in teaching computer architecture.  This paper presents a simple yet nontrivial 
Von Neumann style computer architecture and corresponding implementation suitable for an 
undergraduate course in computer architecture.  The processor architecture itself is worthy of 
study, including such features as subroutines, stack relative addressing, interrupts, and 
conditional branching.  The architecture and implementation documents are written so that 
several options are possible for introducing nod4 into the classroom curriculum.  In particular, 
students may investigate the nod4 processor or implement the processor themselves.  It is also 
possible to present the processor architecture entirely without the implementation.   
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