
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright ©2004, American Society for Engineering Education  

Design Inspections and Software Product Metrics in an 

Embedded Systems Design Course 

J.W. Bruce 

Mississippi State University 

Abstract 

Development tools, especially those for software, have matured to the point where a single 
iteration of the development cycle can be as short as a few minutes.  No one desires to go back to 
the “good old days” when the development and physical prototyping cycles took hours or days.  
However, the slower development pace of yesteryear did prompt a certain amount of critical 
review of design changes and undoubtedly prevented many basic design defects.  Current 
development tools combined with the increasing time-to-market demands lead engineers (and 
engineering students) to design at a frantic pace, often introducing many design defects.  An easy 
way to improve the quality of design is to get the engineers to simply “slow down”. 

This paper describes a design process for an embedded systems design course [1] where 
formalized hardware and software design inspections are performed.  The design inspections are 
held before prototyping begins and strives to curtail the far too common cycle of develop, test, 
change, and test again – a cycle I describe as “hacking”.  The design process described in this 
paper yields a high-quality product within a short design cycle, while mimicking the design 
inspections found in industry [2] [3]. 

The design inspections serve as a convenient time for software product measures to be collected.  
The quantitative measures document the nature, origin, and other vital characteristics of each 
design defect and are frequently used in industry [4] [5].  Furthermore, data obtained in design 
reviews can be used to improve the instruction quality, track the maturity of the student design 
skills, and prompt relevant classroom discussions.  Examples of using the software product 
metrics in design process monitoring, analysis, and estimation are given.  

Finally, the design practices described in this paper help students to develop team and 
communication skills that are often neglected by traditional engineering curricula. Course 
evaluations were obtained from students and external reviewers.  Results indicate that the 
process is well received and achieves the course’s educational objectives. 

1 Introduction 

In [[1]], the author presents a team-based progressive embedded systems design course that, in 
addition to providing the technical embedded systems knowledge, develops team and 
communication skills in situations emulative of industry.  The course was a success by many 
accounts; however, student teams abandoned sound design practices in attempt to meet the 
demanding 16-week “time-to-market” constraint.  Teams adopted a rapid development model 
where design defects are detected and corrected in unit and system testing.  Designs were not 
reviewed other than ad hoc reviews by the designer.  Consequently, team members produced 

P
age 9.381.1



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright ©2004, American Society for Engineering Education  

defect-riddled designs and the design schedules slipped due to an unproductive test-redesign-test 
development cycle.  This paper introduces a lightweight design process based loosely on proven 
software engineering standards that strives to detect defects during design.  This development 
process has been used with success in the subsequent offerings of the design course in [[1]].  
Furthermore, the design process here allows the teams to collect product measures to monitor the 
students’ design effort and development efficiency.   

2 Development Process 

In the university environment, the “time-to-market” is approximately 16 weeks. This short 
duration makes it difficult to motivate, train, and deploy a full-featured industrial software 
development process with students possessing a limited software engineering background. The 
foremost learning goal of the course in [[1]] is embedded systems design, including hardware, 
software, and interfacing. However, a secondary goal is to create a realistic team-based design 
environment while maximizing the design productivity of the student teams.  To this end, two 
software engineering standards, IEEE Std. 1028 [[2]] and IEEE Std. 982.1 [[3]], were used to 
create a lightweight development process to detect design defects before testing and improve the 
probability of a successful design during an academic semester timeframe. 

2.1 Inspection: Roles and Mechanics 

IEEE Std. 1028 defines five different types of review for software development [[2]]. In the 
interest of time, only one review, the “Inspection”, is used.  The inspection in [[2]] has been 
adapted here for software and hardware. These inspections create a peer evaluation of a design 
before it is deployed. During the review, “impartial” reviewers (team members who are not 
author) identify defects, deviations from coding and design conventions, and design 
specifications.  The design’s behavior as written, not its intended behavior, is reviewed critically.  
Other software inspection styles can be found in [[4]]. The goal of the inspection is to identify as 
many design defects as possible.  Design fixes are made by the author later. 

In the proposed inspection process, there are four well-defined design review roles: coordinator, 
author, reader, and recorder. Ideally, each role is played by a different team member. The role of 
the coordinator is to facilitate communication, schedule meetings, and ensure the process is 
successful. The author is the person who authored the design and, ultimately, corrects the 
identified defects. The reader and recorder act as impartial reviewers, in addition to the 
coordinator. 

After a design module has been authored, the inspection procedure has five steps: 

• Planning (coordinator and author) 
After the designer finishes a design component, the author requests an inspection meeting be 
scheduled and sends the design to the coordinator. The coordinator determines a time and 
location for the meeting that is suitable for all team members, and forwards the design to 
each team member.  For each design milestone described in [2], there might be several 
significant design components created by different authors. 

• Preparation (entire team) 

P
age 9.381.2



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright ©2004, American Society for Engineering Education  

Each team member prepares for the meeting by reading and inspecting the candidate design 
before the meeting. The author is encouraged to do so as well.  One study has shown that 
upwards of 90% of code defects are identified during the preparation step before the actual 
code design review meeting [5], so this preparation step is crucial to the success of the 
inspection process. 

• Design Review Meeting (entire team) 
The coordinator’s role is to keep the review meeting on task and to ensure attendance by all 
team members.  The reader’s role is to “read” the design’s behavior aloud. The reader must 
be vigilant to paraphrase the design behavior as written, not its intent. Therefore, the reader 
should never be the author. The reading should be comprehensive; the review critiques 
everything about the design: software instruction, headers, comments, formatting, coding and 
design conventions, and interfaces.  The recorder maintains written record of the findings of 
the inspection meeting. The designer is present only to clarify questions that cannot be 
ascertained from the written design itself. (Requests for the author to clarify are likely an 
indicator of poor design.) Under ideal conditions, the author will not be required to say 
anything during the design review meeting. The coordinator needs to ensure that the 
inspection is impersonal. The author and his/her ability are not critiqued, only the design is 
under review. The author should never be placed into a situation where he/she feels forced to 
defend himself/herself. 

• Rework (author) 
At the end of the inspection meeting, the team determines whether the severity and number 
of defects warrants an additional design inspection. If so, the author uses the design review 
meeting documentation to correct identified defects.  Then, the author submits the corrected 
design to the coordinator who schedules another design inspection. If defects are few and 
minor in nature, the team may opt for the author to correct the defects and proceed to the 
follow-up step. 

• Follow-up (coordinator) 
After the author has corrected the defects identified in the design review meeting, the revised 
design is sent to the coordinator. Using the design review meeting documents, the 
coordinator determines if the author has corrected the defects satisfactorily. If corrections do 
not appear satisfactory to the coordinator, he/she can request additional rework by the author. 
When the coordinator is satisfied with the code, the coordinator approves the design to 
proceed to deployment and testing in the lab. 

It is convenient to impose an additional constraint: inspections are done after the design is 
complete, but before testing.  For hardware designs, the inspections are held after components 
have been selected and a schematic is generated.  For software, inspections are held after the 
author has generated an error-free and warning-free compilation.  Students are instructed that 
hardware cannot be prototyped and software cannot be simulated or tested on hardware before 
being certified in the inspection process described above.  Tools like compilers are used only to 
check syntax.  Design function is to be verified by the author mentally.  Therefore, students are 
forced to understand their design thoroughly and verify every contingency.  Too often, students 
(and mature designers, as well) design thinking if that some esoteric, unexpected behavior is 
created that it will be caught in testing. Much research has shown that correcting defects at later 

P
age 9.381.3



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright ©2004, American Society for Engineering Education  

stages of development is much more expensive than if corrected earlier [[5]]. Since simulation 
and testing are not allowed before peer review, the designer will spend the time to think through 
the design and its effects fully so as not to be embarrassed. 

2.2 Product Measures 

Software development metrics can increase productivity, identify development process 
shortcomings, increase software quality, and aid in development planning [[5]]. Student 
confidence can be increased by comparing their metrics to those published in the literature.  
Furthermore, the instructor gains from collecting metrics on the students’ software process.  The 
instructor can observe the improvement in individual and class abilities, as well as acquire 
indicators of the relative complexity of homework and design assignments.   

Many software measures in IEEE Std. 982.1 are obtained very naturally during the development 
process described in the previous section.  Throughout the design activities and the inspection 
process, students are asked to record 

• Defects -- identified by author, design task, defect type, and severity 

• Person-hours -- recorded by team member, task, and activity (design, review, deployment, or 
testing) 

• Output -- lines of code (LoC) identified by author, design task, and software routine 

Each team member maintains his or her own records, and is required to compute several 
additional measures.  For example, coding efficiency is computed as LoC per workday, where a 
workday is defined as eight person-hours of effort, development costs per LoC are computed 
assuming a hourly rate of $75/hour, and a code quality measure is computed as number of 
identified defects per thousand LoC.  Data collection is facilitated by forms for recording time 
spent in each activity, recording details of defects found, and summarizing inspection findings.  
A spreadsheet is provided to compute all measures by individual, team, and design task.  
Example data collection forms and spreadsheets can be obtained by contacting the author. 

2.3 Use with Design Project in [1] 

At several points during the semester, design teams are required to forward their measures data 
to the instructor.  Individual and team data is disseminated to the class.  This disclosure allows 
the instructor to (i) give frequent feedback to ensure quality data collection, (ii) identify teams 
with a poor team dynamic, (iii) promote a friendly competition between teams to operate with 
maximum efficiency, and (iv) motivate engaging classroom discussion on ethical, economic, and 
design method issues. 

As might be expected, some students resisted the process described here as a “complete waste of 
time”.  Students argued that designers are “born, not created”.  Many examples from the 
literature to support quantitatively the effectiveness of development process were given in 
counter argument.  Students are asked to follow the prescribed procedure for a few weeks.  A 
promise to discuss, evaluate, and incorporate any suggested improvements usually sways 
stalwart resistors.  (This is an excellent way to give students ownership and responsibility of their 

P
age 9.381.4



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright ©2004, American Society for Engineering Education  

own learning.)  After the first design milestone, one team was elated to give a testimonial about 
how the process identified all of their design defects in the preparation step and design review 
meeting.  The team declared the process valuable since their design worked upon assembly and 
downloading of their software.  For the remainder of the semester, this team insisted on 
following the design procedures exactly. This team consistently finished assignments first and 
with high quality. Clearly, this team had internalized the development process and made it a part 
of their “professional persona”.  Throughout the semester, several other design teams reported 
similar experiences. 

Remaining students skeptical of development process were converted not by the benefits of 
IEEE Std. 1028, but by the utility of the information in the measures of IEEE Std. 982.1.  These 
students recognized that the development process described here is a convenient method to 
obtain the measures.  The usefulness of the metrics is made apparent to them by a subject near 
and dear to everyone’s heart - money.  Each team is instructed to use their product measures to 
calculate coding efficiency, defect-production rate, and development time expended in order to 
determine a manufacturer’s suggested retail price (MSRP) for the design.  MSRP is calculated 
for several different potential sales volumes.  Table 1 shows one team’s MSRP calculations for 
100, 10000 and 1 million units.  Each team can see exactly how their productivity affects the 
bottom line.  The exercise is an excellent vehicle for initiating discussion on the design process 
and the economic issues involved, including “bill of materials” costs; non-recurring engineering 
costs; manufacturing costs; facilities and administrative costs; distribution networks; etc.  This 
exercise was more successful than could have ever been imagined. Students were fully engaged 
in discussion and immediately recognized that the age-old adage “time is money” is very much 
true. After this exercise, students appreciate that the collected measures can help them to monitor 
an ongoing design process and to make future design schedules that are more accurate.  

 

P
age 9.381.5



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright ©2004, American Society for Engineering Education  

 

Table 1:  Manufacturer’s Suggested Retail Price (MSRP) Calculation 

The analysis is easily modified to have students find coding efficiency required of their team to 
reach a target MSRP, defect production and detection rates required to reach a target MSRP, and 
time-to-market given target development efficiencies.  The class also enjoyed an exercise 
inspired by “fantasy sports teams” where students would use each student’s individual measures 
to form a development “dream team” to get shortest time-to-market, lowest development cost, or 
fewest defects.  Finally, the development process and product measures described here give the 
instructor great freedom to discuss many of the “softer” aspects of engineering design. 

3 Discussion  

At the course conclusion, students are asked to take an optional online survey. The online survey 
was built, in large part, using the assessment infrastructure developed for EC2000 accreditation 
at the author’s institution [[6]]. The survey questions the students about the frequency of selected 
actions, their perceived progress in abilities, and change in confidence levels. Table 2 shows the 
students’ perceived frequency of performed several tasks.  Results are ordered by average score 
with standard deviation given in parentheses. Frequencies are rated from zero (never) to three 
(very often/almost always).  Students felt the design environment was “often” like what they 
thought industry would use. A significant portion of the students felt that they were “very often” 
called upon to work and communicate as a team and given assessment of each team member’s 
contribution.  Table 2 shows that the focus on the team-based development process is apparent to 
the students. 

 

Manuf costs % of BoM costs 100% Manufacturing costs as percentage of BoM

Manufacturer margin 35% Manufacturer's profit (as percentage of TMC)

Distributor margin 30% Distributor's profit (as percentage of distributor's cost)
Retailer margin 40% Retailer's profit (as percentage of retailer's cost)

NRE costs 18,750.00$        obtain from Team semester metrics

Units sold (for amortization) 100 10000 1000000

Manufacturer

  Development cost/unit 187.50$     1.88$         0.02$         

  BoM cost (Given by instructor) 48.30$       48.30$       48.30$       
  Estimated manufacturing costs 48.30$       48.30$       48.30$       

     (labor, F&A on manuf.,  packaging, etc.)

Total manufactured cost (TMC) 284.10$     98.48$       96.62$       
  Margin 99.44$       34.47$       33.82$       

  Manufacturer's sales price 383.54$     132.94$     130.44$     

Distributor

  Margin 115.06$     39.88$       39.13$       
  Distrbutor's sales price (wholesale) 498.60$     172.82$     169.57$     

Retailer

  Margin 199.44$     69.13$       67.83$       

  Retailer's sales price (MSRP) 698.03$     241.95$     237.39$     

P
age 9.381.6



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright ©2004, American Society for Engineering Education  

Table 2:  Task Frequency Survey Results 

In THIS COURSE, ... (N=15) Score (0 to 3) 

I had to make critical assessments of my work, other’s work, and our relative contributions. 2.67 (0.617) 

I had to learn to work and communicate with others to accomplish my tasks. 2.60 (0.632) 

I used knowledge or skills learned in previous/other classes. 2.53 (0.640) 

I had to supplement material learned in lecture with self-study. 2.20 (0.941) 

the design environment is very similar to what I know/envision industry to be like. 2.07 (0.829) 

Students rated their personal progress in each of the course objectives formulated in [[1]]. 
Responses are rated from zero (none) to three (a great deal). Table 3 shows the survey results 
ordered by average score. Students unanimously felt their understanding of embedded systems 
increased “a great deal”. This learning objective constitutes the “information transfer” expected 
by students. However, it is interesting to note a large increase in appreciation for the value of 
design documentation. Experience has shown that students often dismiss these documents 
initially and express these feelings aloud. It seems that by the semester end, the students have 
bought into using these documents in the design process. As hoped, students responded that their 
abilities to learn on their own, work in teams, and troubleshoot were improved by the course. 
Time constraints prohibited many of the planned team-building exercises, however, students note 
“some” improvement in their ability to motivate their teammates. 

Table 3:  Learning Objective Progress Survey Results 

Progress made, BECAUSE OF THIS COURSE, in your ... (N=15) Score (0 to 3) 

understanding of embedded systems and components 3.00 (0.000) 

your appreciation of the usefulness of design documentation 
2.80 (0.414) 

ability to create a system to meet a detailed design specification 2.67 (0.488) 

Skill to work in an engineering design team 2.60 (0.632) 

ability to evaluate and justify competing designs against a specification 2.40 (0.737) 

Skill in assessing the performance of yourself and others 2.00 (1.000) 

ability to motivate others to achieve their maximum potential 1.67 (1.175) 

4 Conclusions 

In order to meet the need for embedded systems engineers, the author has created an embedded 
systems design course that emulates industrial situations as much as possible. The student teams 
build a progressively more complex design using formal and documented design reviews and 

P
age 9.381.7



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright ©2004, American Society for Engineering Education  

collect product measures to monitor their design performance. Design teams detect defects in the 
design phase rather than the more costly, and less efficient, testing phase.  Students indicate an 
increased engagement and perceive an increased relevance of their education. Students also 
report increased confidence in team, communication, and lifelong learning skills. 
 

References 

[1] Bruce, J.W., Harden, J.C., and Reese, R.B. “Cooperative and Progressive Design Experience for Embedded 
Systems”, IEEE Transactions on Education, vol. 47, no. 1, pp. xxx-xxx, Feb. 2004.  (In press) 

[2] IEEE Std. 1028-1997, IEEE Standard on Software Reviews.  Section 6. 
[3] IEEE Std. 982.1-1988, IEEE Standard Dictionary of Measures to Produce Reliable Software. 
[4] Gilb, T. and Graham, D., Software Inspections. Addison-Wesley, 1993. 
[5] Pressman, R.S., Software Engineering: A Practitioner’s Approach 5/e, Mc-Graw Hill, 2001. 
[6] Harden, J.C. and Lane, M.G., “Web-based tools for assessment automation,” Proc. ASEE Annual Conf. and 

Expo., Session 1532, 2002. 

 

 

 

Biographical Information 

J.W. Bruce received the B.S. degree from the University of Alabama in Huntsville in 1991, the 
M.S.E.E. degree from the Georgia Institute of Technology in 1993, and the Ph.D. degree from 
the University of Nevada Las Vegas in 2000, all in Electrical Engineering.  Dr. Bruce has served 
as a member of the technical staff at the Mevatec Corporation and the Intergraph Corporation. 
Since 2000, Dr. Bruce has been with the Department of Electrical and Computer Engineering at 
Mississippi State University, where he is an Assistant Professor.  Dr. Bruce teaches courses on 
embedded systems, VLSI, and systems-on-a-chip design and was named the Bagley College of 
Engineering Outstanding Engineering Educator in 2003.  Dr. Bruce researches data converter 
architectures and embedded systems design.  He is the author or coauthor on more than twenty 
journal articles or technical publications.  Dr. Bruce served as Associate Editor of IEEE 

Potentials from 1997-2001.  He is a member of Eta Kappa Nu, Tau Beta Pi, and ASEE. 

 

P
age 9.381.8


