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Abstract 

 

The primary goal of this paper is to develop a vehicle through which undergraduate 
students may design smart controllers that employ artificial intelligence control tools.  This goal 
can be achieved through the design and construction of intelligent (fuzzy-neural-network) 
controllers for dc-dc converter topologies, the design of an interface with particular emphasis on 
laboratory environment, and the design and testing of the different control topologies. The 
control structure integrates the ideas of fuzzy control system and neural network architecture into 
an intelligent process. The fuzzy control design is equipped with a learning algorithm to adjust 
the control angle (or duty ratio) so that the steady state error is minimized and a zero-voltage 
regulation is achieved.  The student has the opportunity to assume the role of a control system 
designer, who is given the task of designing a cost effective yet flexible controller. The 
fundamentals governing the design, control and performance of the DC-DC converters are also 
illustrated.  The entire system is built and tested in the laboratory by using off-the-shelf 
components and software. A comprehensive analysis of the principle of operation, design 
consideration and experimental implementation of the converter topologies with built-in 
intelligent controller is developed. A rapid response is expected when the proposed controller is 
actually implemented in a real-time mode. 
 

1.0  Introduction 
 

Choppers themselves are generally divided into two groups: step-down or buck converter 
and step-up or boost converter [1]. For buck converters with constant output voltage, it is always 
desirable that the output voltage remains unchanged in both steady state and transient operations 
whenever the supply voltage and/or load current are disturbed. This condition is known as zero-
voltage regulation and it means that the output voltage is independent of the supply voltage and 
the load current. To achieve zero-voltage regulation, the choice of the control method plays a 
very critical role in the performance of converters. The most commonly used control method in 
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converters is the direct duty ratio control [2-5]. In this control method the output voltage is 
constantly monitored, fed-back, and compared with a reference voltage and their difference (the 
error) is amplified and used to control the duty ratio of the converter in such a way that the 
output voltage remains constant. This approach, however, cannot eliminate the supply voltage 
and load current disturbances until they are detected at the output.  Another popular method is 
the current mode control, where the inductor current is also monitored and fed-back together 
with the output voltage. By a proper design, current mode control can eliminate the input voltage 
disturbances but it cannot eliminate the load current disturbance [6]. Feed-forward types of 
controllers have also been designed by sensing the input voltage to improve line regulation in 
applications with a wide range of input voltages and load currents. However, direct sensing of 
the input voltage through a feed-forward loop may induce large-signal disturbances that could 
upset the normal duty-cycle of the converter.    A method to achieve zero-voltage regulation in 
buck converters has been introduced in [4]. Using circuit analysis, a direct relationship between 
the average output voltage and the reference voltage is determined.  Based on this relationship, a 
proper control law (Function Control) is developed.  Employing an averaged low frequency 
linear topology of buck converters, the control law shows that the output voltage is independent 
of both the input voltage and the load current and, thus, a zero-voltage regulation can be 
achieved. Using function control, however, the exact relationship between the input and output 
voltages becomes too complex to be practically executed. By means of human linguistic terms 
and common sense, several fuzzy logic-based controllers have been developed in [7-14].  These 
fuzzy controllers have shown promise in dealing with nonlinear systems and achieving voltage-
regulation in buck converters [9-14]. Fuzzy logic control uses human like linguistic terms in the 
form of IF-THEN rules to capture the nonlinear system dynamics. Once in place, the fuzzy rules 
will not be able to adapt themselves to adequately capture the dynamics of the system. To 
become adaptive, fuzzy logic control must be able to learn to adjust its parameters in order to 
capture the dynamics of the system.  Artificial neural networks (ANNs) have also found use in 
control systems [15-19]. One of the major features of ANNs is their learning capability.  A 
drawback in using an ANN for control is that there is so much freedom in structural 
implementation choice that it is often difficult to decide how complex a structure is actually 
necessary for the desired control.  Besides, the implementation is not at all intuitive and the inner 
workings of the network are very much invisible to the designer.  The integration of neural 
network architectures with fuzzy control has resulted in a very powerful strategy known as 
adaptive-neural-network fuzzy system.  Some researchers suggest that neural networks and fuzzy 
control are in fact special instances of adaptive networks [20-21].  
 

2.0 Proposed Converter Topology with built-in Intelligent Controller 
 

A fuzzy-neural-network control system is proposed in this paper.  Both fuzzy logic 
principles and learning functions of neural networks are employed together to design a novel 
adaptive-fuzzy-based neural network (AFNN) controller-based dc-dc converter.  The 
combination of both paradigms allows the merging of intelligent learning algorithm, which is 
developed in the realm of ANNs, together with the representation of qualitative and cognitive 
rules in fuzzy systems.  A fuzzy controller is first designed which is the starting point of the 
AFNN.  Then, ANN architecture is developed based on the pre-designed fuzzy controller.  The 
network architecture is built, such that the designer knows the internal workings as they relate to 
fuzzy controller components.  The basic structure of a converter topology with built-in intelligent 
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controller is shown in Fig. 1.  The converter is represented by a “block box” from which we only 
extract the terminals corresponding to input voltage, Vi, output voltage, Vo, one inductor current, 
iL, and controlled switch, S. The controller output variable is the switch duty cycle, δ.  
 

2.1 Fuzzy Controller Design 
 
  Primarily, students will decide on the state variables of each converter topology that can be 
taken as the input signals to the controller. The controller-input variables include, output voltage 
error, inductor current error, and inductor current, which will be used for current limiting only. 
Consequently, the input to the converter unit would be a signal proportional to the converter duty 
cycle that is actually the output of the controller. After choosing proper fuzzy variables as input 
and output of the FLC, students must decide on the fuzzy sets. These sets transform the 
numerical values of the input of the FLC, to fuzzy quantities. Choosing the fuzzy sets to 
formulate the fuzzy control rules are, also, significant factors in the performance of the FLC. 
Empirical knowledge and engineering intuition play an important role in choosing fuzzy sets and 
their corresponding membership functions. The number of these fuzzy sets specifies the quality 
of the control, which can be achieved using the FLC.  Also, students will recognize that as the 
number of the fuzzy sets increases, the management of the rules is more involved and the tuning 
of the FLC is less straightforward. Accordingly, a trade-off between the quality of control and 
computational time is required to choose the number of fuzzy sets.  At this point, students will 
decide on the fuzzy sets for each of the input and output variables. They include, PL (positive 
large), PM (positive medium), PS (positive small), ZERO, NS (negative small), NM (negative 
medium), and NL (negative large).  After specifying the fuzzy sets, students will determine their 
membership functions.  The triangular membership functions are used in this paper.  Finally, 
students will formulate the FLC by using a set of fuzzy decision rules. Following evaluation of 
the rules, students will use fuzzy centroid method to determine the fuzzy control output.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 1 Converter topology with built-in intelligent controller  
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The block diagram of the fuzzy logic control scheme of topology I for the DC-DC converter is 
shown in Fig.2. The output is the duty cycle, δk. For this topology, there are two inputs, the 
voltage error 

refo UUe −= and the change of the voltage error 1−−= kke eec . The term Uo is the 

present output voltage, and Uref is the reference output voltage. 
 

2.1.1 Fuzzy Rules-Based Topology I 
 

 Students derived the heuristic fuzzy control rules based on the following criteria: 1) IF 

the output of the converter is far from the set point, the change of the duty cycle must be large to 
bring the output to the set point quickly, 2) IF the output of the converter is approaching the set 
point, a small change of duty cycle is necessary, 3) IF the output of the converter is near the set 
point AND is approaching it rapidly, the duty cycle must be kept constant to prevent overshoot, 
4) IF the set point is reached AND the output still changing, the duty cycle must be changed a 
little bit to prevent the output from moving away, 5) IF the set point is reached AND the output 
is steady, the duty cycle remains unchanged, and 6) IF the output is above the set point, the sign 
of the change of the duty cycle must be negative, and vice versa. 
 

2.2 Fuzzy Logic Controller Using Topology II 
 

             In this topology, students use three input variables: 1) Output voltage error, eu, 2) 
Inductor current error, ei and 3) Inductor current, iL.  A block diagram of the fuzzy controller 
structure is shown in Fig. 3. While the output voltage reference is usually available as an external 
signal, the inductor current reference depends on the operating point. For this reason, students 
computed the reference signal of the inductor current by means of a low-pass filter in the 
assumption that the dc value of the current is automatically adjusted by the converter according 
to the power balance condition. The controller output variable is the switch duty cycle controller, 
which is obtained by adding the outputs of two fuzzy controllers. One fuzzy (P) gives the 
proportional part δp of the duty cycle as a function of

Lrefi iIe −= ,
oorefu UUe −=  and iL. The other 

fuzzy (I) gives as increment of δI, which is then integrated to provide an integral term δI of the 
duty cycle

Ip δδδ += . 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Fuzzy Controller-based Topology I                    Fig. 3 Fuzzy Controller-based Topology II 
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2.2.1 Fuzzy Rules-Based Topology II 
 
Far from the set point: students recognized that when the output voltage is far from the set point 
(eu is PB or NB), the corrective action must be strong, meaning δp should be NB or PB, while δI 

should be zero. The basic control rules are: 
IF eu is PB AND iL is NORM, THEN δp is PB AND δI is ZE. 
IF eu is NB AND iL is NORM THEN δp is NB AND δI is ZE. 
This shows that far from the set point, the control action is denoted by the output voltage error, 
provided the existence of the current limit. 
Close to the Set Point: In dealing with this issue, students took properly into account the error of 
the current in order to ensure stability and rapidity of response. The goal in this region is 
centered in achieving a satisfactory dynamic performance with small sensitivity to parameter 
variations. The control rules are according to energy balance and inductor current is far from the 
limit. 

� IF eu AND ei are both Zero, δp AND nd δI must be zero too (steady state condition). 
� IF the output voltage error eu is Negative AND inductor current is greater than the 

reference value (ei < 0), δp and δI should be negative. 
� IF output voltage error is Positive AND the inductor current is greater its reference value, 

THEN δ p and δ I must be kept to zero to prevent undershoot and overshoot.  
� IF the output voltage is Positive AND the current is lower than its reference value (ei > 

0), δp and δ I must be positive, the system energy increases in this condition. 
 

3.0 Adaptive Network Architecture-Based Topology I 
 

Five-layer neural network architecture is proposed in this research. Fig. 4 shows the 
module of the neural network architecture. The two input nodes in layer 1 only transmit input 
signals to the next layer.  Each node corresponds to one input variable.  The input variables are 
the output voltage error and the inductor current error.  For every node i in this layer, the input 
and the output of the network are represented, respectively, as: 

111111 )(, iiiiii netnetfYXnet ===  
where Xi

1 represents the i-th input to the node of layer 1. 
The nodes in layer 2 are term nodes that act as membership functions to express the input/output 
fuzzy linguistic variables.  In this proposal, the Gaussian activation function will be used to 
represent the membership function.   Therefore, for the j-th node 

( )
( )

)exp()(,
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X

net ==
−
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where µij and σij are, respectively, the mean and the standard deviation of the Gaussian function 
in the j-th term of the i-th input linguistic variable Xi2 to the node of layer 2.  The weights 
between the input and membership layer are assumed to be unity.  
 

Students defined the fuzzy sets for the input/output variables as PL, PS, ZE, NL, and NS.  
Hence, 10 and 25 nodes are included in layers 2 and 3, respectively, to indicate the input/output 
linguistic variables.  Each node in layer 3 is denoted by Π which multiplies the incoming signal P
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and outputs the result of the product.  Consequently, each node of this layer is a rule node that 
represents one fuzzy control rule.  In total, there are 25 nodes in layer 3 to form a fuzzy rule base 
for two linguistic input variables.  The links of layer 3 define the preconditions and the outcome 
of the rule nodes, respectively.  For each rule node, there are two fixed links from the input term 
nodes.  For the k-th rule node 

3333333 )(, kkkkjjkjk netnetfYXwnet ==Π=  

where Xj represents the j-th input to the node of layer 3, and wjk is the link that connects the 
output of the j-th node in layer 2 with the input to the k-th node in layer 3. The weights between 
the input and membership layer are, also, assumed to be unity.  The links of layer 4, which are 
surrounded by a dotted line, will be adjusted in response to varying control circumstances.  The 
link weights, wkl, represent the output action of the k-th rule.  Each node in layer 4 consists of 
nonlinear mappings, which are sigmoidal functions. The sigmoidal activation function imposes 
bounds on the signal, and enhances stability.  For the l-th node in this layer, the input and output 
of the network are represented as:  

1
)exp(1

2
)(,

4
44434 −

⋅−+
===

l

lllklkl
net

netfYwYnet
γ

 

The output of layer 5 is the output layer and acts as a defuzzifier. The single node Yo in this layer 
is labeled ∑, and it sums all incoming signals to obtain the final inferred results: 

55545 )(, oooo

l

lo netnetfYYnet ===∑  

The defuzzification aims at producing a non-fuzzy control action that best represents the 
possibility of distribution of an inferred fuzzy control action. The weighted average (centroid) 
method, in which the fuzzy centroid constitutes the controller output signal, is utilized.   
 
3.1 Adaptive Network Architecture-Based Topology II 
 

Six-layer neural network architecture is proposed in this section.  Fig. 5 illustrates the 
module of the network architecture.  The two input nodes in layer 1 only transmit input signals to 
the next layer. Each node corresponds to one input variable. The input variables are the output 
voltage error, ev, and the inductor current error, ei. The first four layers are parallel to the ones in 
topology I. Thus, layer 5 acts as a defuzzifier. The nodes pδ and IδΔ  in this layer are labeled ∑ 

and they sum all incoming signal to each branch to obtain the final inferred results for 

pδ and IδΔ . 

,445
llmm Ywnet ∑=  5555 )( mmmm netnetfY ==  

The fifth layer is the one we training or updating its weights, wlm which represents the weight 
connecting layer k and layer m, to satisfy the desired value. The output of Layer 6 is the 
summation of pδ and the integration of IδΔ  that generates the change in the converter duty 

cycle. 
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Fig. 4 Network architecture of topology I               Fig. 5 Network architecture of topology II 
 
 

4. Laboratory Setup 
 

  The overall system is composed of four major elements: 1) a DC-to-DC switch mode 
power stage converter 2) a 14-bit PCI Data Acquisition Processor (DAP 840/103) [14], 3) a 
termination board (MSTB 010-06-C1Z) [14], 4) a Pentium III 550-MHz personal computer (PC) 
with Windows NT 4.0, and a microcontroller (PIC16F877). Fig. 6a displays the experimental 
setup.  The power stage concept is based on that of a “dual-output forward" configuration 
operating in a continuous mode of energy storage. When the power MOSFET switch Q1 is 
turned ON energy is transferred from the input power source (VIN) to the two secondary sides of 
the transformer. The voltage potential across the terminals of C11 will be that of the reflected 
line voltage, namely NS1*VIN/NP. When Q1 turns OFF, the 5V and 15V load power is sustained 
by the energies of the two ‘inductors’(L1 & L2) and the energy stored in C11 as a result of the 
potential NS1*VIN/NP, will then flow back into the 5V secondary winding in a resonant manner 
with the magnetization inductance of the transformer. This causes the voltage across the 5V 
secondary to reverse polarity in a sinusoidal manner, until the energy in C11 is completely 
dissipated. 
 

The PCI Data Acquisition Processor (DAP 840/103) occupies one expansion slot in the 
Personal computer and has onboard processor, (TI486SXLC2-50 CPU), 14-bit A/D converter, 
50ns TIME resolution, 800K samples per second, memory, and a dedicated multitasking real-
time operating system. The MSTB (010-06-C1Z) termination board allows secure connection of 
discrete wires to the DAP 840/103 and it combines analog and digital termination on the same 
board. The feedback network provides as input to the adaptive fuzzy controller the error value at 
the output, for the appropriate control signal to be issued. It is built around an optocoupler that 
provides ground isolation between the input and the output with a potentiometer for the 
adjustment of the two output voltages to desired levels. The termination board, DAP 840/103, 
reads the reads the error value from the feedback network using an input channel pipe to the PC 
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in binary format. The source program (written in Matlab and Dapview language) running on the 
PC is configured to read the data and correctly processed. The processed data is finally sent as an 
input to the adaptive fuzzy controller code running on the PC to issue the appropriate command 
signal for the microcontroller through pin 3 of the RS232 to generate the control signal, which is 
the duty cycle. Using a microcontroller the duty cycle is generated by a peripheral Interface 
Controller (PIC16F877), which uses the Harvard Architecture and mostly used in RISC 
(Reduced Instruction Set Computer) Computers. It has a separate program bus and data bus, 
which can be of different widths. A single instruction cycle time of the PIC 16F877 is 0.2 µs. A 
code was written using MPLAB and loaded into the PIC16F877 to generate pulses at 100 kHz 
with variable duty cycle depending on the input data received through pin 3 of the RS232 sent by 
the fuzzy logic controller running on the PC. The output pulses are sent through pin 2 of the 
RS232 to the gate of transistor Q1 which in turn produces the necessary drive pulse to the power 
stage of the converter to keep the output voltage constant. Fig. 6b displays a snap shot of the 
hardware of the laboratory setup 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6a Experimental setup 
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Fig. 6b Snap shot of the laboratory setup 
 

4.0 Simulation Results 
 

Several cases are examined but only salient cases are presented. In case I, the adaptive 
fuzzy controller of topology I is examined for the buck-boost converter where the load resistance 
is varied from 10 Ω to 5 Ω and back to 10Ω. Fig. 7 shows the performance of fuzzy and adaptive 
fuzzy controllers, while Fig. 8 shows the corresponding duty cycle. It can be seen from Fig. 7 
that the adaptive fuzzy controller reduces the ripple in the output voltage as it almost brings the 
output voltage to its reference value most of the time.  In case II, the input voltage is varied from 
15 V to 20 V and back to 15 V. Figs. 9 and 10 show the controlled output voltage and the 
corresponding duty cycle, respectively. Fig. 9 shows that the adaptive fuzzy controller reduces 
the ripple in the output voltage. In addition, it almost brings the output voltage to its reference 
value most of the time. The maximum tolerance that the adaptive fuzzy generates occurs at 
“0.016 second” with a value of “1.304 %” while at the same point the fuzzy logic has a tolerance 
of “6.6006 %”. It is also shown that when the input voltage is increased suddenly from 15 V to 
20 V, the duty cycle has to compensate by a reduction from 0.25 to 0.2 to keep the output voltage 
constant.  
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Fig. 7 Fuzzy/adaptive fuzzy trajectories         Fig. 8 Duty cycle trajectory                  P
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Fig. 9 Output voltage trajectory                             Fig. 10 Duty cycle trajectory 
 
In case 3, test results are given for the output voltage of a buck converter with the 

reference voltage changing from one level to another (square-wave reference track with 
amplitude of 20 V). Figs 11 and 12 show the controlled output voltage and the corresponding 
duty cycle. Fig 11 shows the voltage trajectory, when the desired voltage changes from one value 
to another, using fuzzy and adaptive fuzzy control.  The converter operates at voltage of 5 V and 
drops to 3 V and then proceeds to desired voltage of 5 V. The actual voltage is superimposed on 
the specified reference voltage in order to compare tracking accuracy.  It is observed that the 
fuzzy controller exhibits errors especially near the corners at t= 0.014 S, t= 0.02 S, t = 0.035 S, 
and t= 0.04 S. However, the adaptive fuzzy controller almost manage to follow the reference 
voltage every where, especially in the corners when the fuzzy logic almost fails to do so.           

      
  
 
 
 
 
 
 
 
 

Fig. 11 Output voltage trajectory    Fig. 12 Duty cycle trajectory 
   
The second control architecture whose performance is to be studied is the control 

topology II.  First, topology II is tested on the buck-boost converter where the load regulation is 
varied from 20 Ω to 150 Ω and back to 20Ω.  Fig. 13 shows the output voltage using PI, fuzzy 
logic, and the adaptive fuzzy controllers. It is shown from Figure 13 that the adaptive fuzzy 
controller almost matches the output voltage to its reference value of 20 volts. Fig. 14 shows the 
controlled output voltage of a Sepic converter using PI, fuzzy, and adaptive fuzzy controllers 
with load regulation varying from 20 Ω to 200 Ω and back to 20Ω.  
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         Fig. 13 Output voltage trajectories                 Fig. 14 Voltage trajectories of Sepic converter  
 
 Conclusions 
 

The proposed adaptive fuzzy system is designed in such that only one layer is to be 
trained. The weights of this layer are trained to capture the system dynamics and therefore 
minimize the ripples around the operating point. Two adaptive fuzzy neural network topologies 
are designed and tested; the differences between them are basically in the input variables and in 
the fuzzy logic structure. That is, the number of the neuron needed in the learning layer. Many 
cases are tested concluding that the adaptive fuzzy topologies are efficiently reducing the effect 
of external disturbances such as load changes and input voltage changes, on different types of 
DC/DC converters. 

A commensurate number of components is designed and built. The components are tested 
individually and in various combinations of hardware and software segments. The entire system 
will be fully tested.  The other work to be completed includes the integration of the full system 
and the start of the implementation stage of the project.  Two categories of tests, namely, load 
regulation, and line regulation will be carried out to evaluate the performance of the proposed 
control system.   
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