
Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

Designing and Implementing an Embedded
Microcontroller System: Tetris Game

Tyler W. Gilbert, Barry E. Mullins, and Daniel J. Pack

Department of Electrical Engineering
US Air Force Academy

Abstract

In this paper we present the software and hardware design experience of a junior cadet
majoring in electrical engineering at the U.S. Air Force Academy as he completed an
embedded system project in a second microcontroller course. The paper also includes
the corresponding observations made by his instructors. Some of the topics of this
semester-long course are programming microcontrollers using C, software and hardware
design techniques, interfacing devices to buses including fan-out issues, as well as
buffering and timing analysis for interfacing devices. As a course requirement, an
embedded system project must be completed by each student using the hardware kernel
they had developed throughout the semester. The Tetris game was an ideal final project
for this course due to its demanding software and hardware requirements, which
required the student to apply and incorporate hardware and software skills and to
perform tradeoff analyses using what he had learned throughout the course: (1) memory
expansion, (2) input/output interfacing, (3) embedded software development, and (4)
stand-alone system development. This paper provides the reader with the step-by-step
procedure used at the Academy for the completion of the embedded system project and
shares the lessons learned from both student and instructors’ perspectives in the context
of completing a successful and challenging Tetris game project.

Introduction

Second class cadet (junior year) electrical engineering (EE) majors at the United States
Air Force Academy are given the opportunity to take a second course in microcontroller
design—EE 383, Microcomputer System Design. The goals of the course are “Cadets
shall develop the ability to design, build, program, and debug a stand-alone hardware
kernel consisting of a microcontroller, memory, input/output (I/O) ports, and standard
“glue” logic for use in embedded microcontroller applications.” [1] The course helps
students learn the skills required to implement and program microcontrollers, using the
Motorola 68HC912B32 as the platform, to construct embedded systems. Each cadet in
the course is required to complete a final project that ties all concepts together in an
interesting microcontroller-embedded project. The final project described in this paper
was accomplished by the lead author and was identified by the instructor as one of the
outstanding example projects in the course. The student chose to build the game of Tetris
using the 68HC12 along with an AND1371 graphical liquid crystal display (LCD) and a
Nintendo Entertainment System (NES) controller. Figure 1 illustrates the various
 P

age 10.421.1

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

components of the completed project. The student chose this project because it was
challenging and stimulated his interests. He was given three weeks to complete the final
project.

The experience was invaluable in motivating the student to become a better digital
electrical engineer for three reasons: (1) the project stimulated his personal interests; (2)
the project enriched his abilities to gain new knowledge as he researched the
requirements and capabilities of the AND1371, an NES controller and the game of Tetris;
and (3) programming video game graphics equipped the student with skills to tackle more
complex microcontroller applications. All courses within the digital sequence at the Air
Force Academy strive to provide theses experiences to the students. We have found
allowing the students the freedom to select their final projects provide students with
extremely rewarding experience of dealing with microcontroller/microprocessor systems.

Figure 1. Picture of Tetris Project

The design of this project involved both hardware and software. The hardware portion of
the design was divided into the following three sections: (1) memory expansion, (2) an
AND1371 graphical LCD interface and 3) an NES controller interface. The memory
expansion was completed as a part of the normal course work. Although the
68HC912B32 microcontroller possessed sufficient memory for the project, the memory
expansion was required as a pedagogical exercise. The LCD and the controller were
exclusive to the final project as was the majority of the software.

The corresponding software design was broken down into several milestones in order to
systematically create the Tetras game using sound engineering practices. The main
programming challenges, listed in order of practical implementation and not necessarily
difficulty of programming, were (1) drawing blocks on the LCD, (2) making the blocks
fall and rotate on the screen, (3) saving the position of each fallen block, (4) making sure
blocks do not mesh into other blocks or boundaries, (5) generating a random number to

P
age 10.421.2

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

vary the shape of the new blocks, and finally (6) incorporating extra features to the game,
such as a scoreboard, a next-piece window, a number-of-lines completed entry, and an
introduction screen, background wallpaper, and record of high scores with players’
initials.

Design

In this section we describe both the hardware and software designs of the project. The
hardware design consisted of integrating the 68HC912B32 with the AND1371, external
EPROM (to store the code) and an NES controller. Once again, the internal memory of
the microcontroller was not used for pedagogical reasons. In this paper we focus on the
challenges a student may face in integrating the hardware and software components of
such a project.

Hardware Design The hardware design for the project is shown in Figure 2. Although
the hardware documentation for the AND 1371 provided sufficient information to
correctly connect the LCD to the microcontroller, the complexity involved in operating
the AND1371 made it challenging for the student to implement. One of the main
problems encountered was wiring errors found within the data, control, and address
buses. The problem was fixed by analyzing the signals using a digital logic analyzer and
by careful review of the application notes.

Figure 2. Block Diagram of Hardware Setup

Adding external memory required (1) performing time analysis for the data, control, and
address signals between the 68HC12 and an EPROM memory chip, (2) programming a
GAL chip to decode addresses, (3) incorporating an address buffer to demultiplex the
address bus, and (4) wiring the components together. Figure 3 shows the hardware
diagram for the memory expansion task. Learning the intricacies of booting a
microcontroller from external memory was not a trivial task

68HC12
EVB

EEPROM

AND1371

Power
Source

P
age 10.421.3

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

The NES controller presented its own challenges to the student. Since the student was
unable to obtain technical documentation, he performed reverse engineering to obtain and
implement the specifications and requirements. After his analysis was complete, he
discovered that others have performed the same reverse

Figure 3 Memory Expansion Hardware Diagram

engineering task and published their findings online; regardless, the experience for the
student was extremely valuable. The NES controller information can be found at
http://www.mit.edu/~tarvizo/nes-controller.html. The student had to assume the voltage
levels used with the 68HC12 were compatible with the NES controller and the
microcontroller sourced sufficient current to drive the device. Fortunately, both

Figure 4. NES Controller Pins with Picture of Connector
(http://www.mit.edu/~tarvizo/nes-controller.html)

Pin Function Color
1 Ground brown
2 Pulse red
3 Latch orange
4 Data yellow
5 NC NA
6 NC NA
7 Power white

1234

5 6 7

P
age 10.421.4

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

assumptions turned out to be true. Figure 4 shows the hardware connections for the
controller. The latch and pulse pins should be wired to output ports on the
microcontroller. The data line should be wired to an input on the microcontroller.

Software Design The software design involved programming the hardware components
to work together and writing the code for the Tetris game. As the first step, the student
identified major tasks and designed the required task flow using the flowchart shown in
Figure 5.

Figure 5 Software Flow Diagram

The NES controller proved much simpler to implement than first anticipated. It was
important to test the controller on an NES console to verify that the controller was
functioning properly. At first the student made the mistake of having the 68HC12
reading the pulse count from the device when it should have been writing to it. Figure 6
shows the waveforms that the controller must receive. The pulse period is given as 12
microseconds; however, it was found that the device was rather insensitive to timing.

Once the hardware devices were successfully implemented and tested using software, the
time came to write the code for the Tetris game. The main hurdles in coding were (1) P

age 10.421.5

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

drawing blocks on the LCD, (2) making the blocks fall and rotate on the screen, (3)
saving the position of each fallen block, (4) making sure blocks do not mesh into other
blocks or boundaries, (5) generating a random number to vary the shape of the new
blocks. This paper only offers a brief lead on how these hurdles were overcome. The

Figure 6. Waveform plots for the NES controller
(http://www.mit.edu/~tarvizo/nes-controller.html)

easiest way to draw blocks on the screen was to fill an entire video memory location
rather than trying to manipulate the bits in multiple memory locations. To rotate the
blocks, the student created a simple Sine/Cosine lookup table to switch the coordinate
system back and forth from polar to Cartesian and vice-versa—polar coordinates to rotate
and Cartesian to move blocks left, right, and down. The student created a matrix that
saved every fallen piece. To avoid meshing, the future position of any part of the moving
block was checked for vacancy before allowing the move. Pulling a number off the
68HC12’s free running timer generated a number with sufficient randomness for each
new block.

Discussion

The final project of the second microcontroller course offers an opportunity for students
to design and implement a microcontroller-based embedded system. The instructors see
such projects as extremely valuable to student learning. Some of the more germane
reasons are (1) an opportunity to reflect on the course materials and apply the knowledge
learned, (2) experience to improve independent learning skills, (3) a chance to solve
open-ended design problems, encouraging students to use their imaginations, and (4) an
opportunity to exercise both software and hardware skills. The overall experience
supports and enhances the students’ probability of success in their senior capstone design
course.

Conclusion

In this paper, we presented a case study of a student project, the Tetris game, in a second
microcontroller/microprocessor course at the US Air Force Academy. The project
provided the student with ample opportunities to improve his hardware and software
engineering skills. Making the project open-ended made it fun for the student. Although
the project time took away some lecture time from the course, the experience of the
student demonstrated that the tradeoff was worthwhile. The detailed course information
can be obtained by contacting the third author.

P
age 10.421.6

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

References
1. EE 383 Course Syllabus, United States Air Force Academy CO, 30 December 2003.

TYLER W. GILBERT graduated from Box Elder High School in Brigham City, Utah in June of 1999.
Following his freshman year, he took two years off school and re-entered the Academy in the class of 2005.
He will receive a B.S. on June 1st, 2005 in Electrical Engineering. He will go on to serve in the Air Force
as a developmental engineer.

BARRY E. MULLINS is an Assistant Professor of Computer Engineering in the Department of Electrical
and Computer Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH. He is a
registered Professional Engineer in Colorado and a member of Eta Kappa Nu (Electrical Engineering), Tau
Beta Pi (Engineering), IEEE (senior member), and ASEE.

DANIEL J. PACK is a Professor in the Department of Electrical Engineering at the United States Air Force
Academy, CO. He has co-authored two textbooks on embedded systems (68HC12 Microcontroller:
Theory and Applications and Embedded Systems) and published over 70 refereed journal and conference
papers on control, robotics, pattern recognition, and engineering education.

P
age 10.421.7

