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Detecting Possible Cheating In Programming Courses Using Drastic Code Change

Abstract

Automated code similarity detection tools are widely used in programming classes to detect students
cheating who copied from classmates or from a common online source. But today, other ways of
cheating are becoming common that do not yield code similar to classmates, such as copying from an
online source that other classmates didn't find, or copying code developed by a hired contractor. Using a
cloud-based programming environment that records every code compile/run, we detected code clearly
not written by students in our class and noticed running of such code was sometimes preceded by a
"drastic change" in their code history -- a run whose code is so dramatically different from the previous
run as to be unlikely to have been derived normally from the previous run. Some students submitted
such code right away, what we call an "initial leap". Other students tried writing code themselves, gave
up, and then copied from an online source or hired a contractor, what we call "gave up". Among either
group, we further noticed that some would sequentially try a variety of copied solutions attempting to
find one that works, what we call "solution hopping," causing even more instances of drastic changes in
the student's code history.  Thus, we developed a tool, based on a simple "text diff" algorithm, to detect
drastic code changes in student code progressions, and to point instructors to possible cheating cases. We
conducted two experiments. The first experiment measured the accuracy of our tool. The tool averaged
100% sensitivity and 100% specificity using real data, and synthetic data. The second experiment
studied the prevalence of drastic changes in real student programs in our course. The study showed
about 32% of students in the initial leaps group, and 5% in the gave up group, which we manually
confirmed as actual cheating. Furthermore, 24% of initial leap students and 47% of gave up students
subsequently solution hopped. We plan to make our drastic change detection tool available to the CS
community as a free web tool.

Introduction

A common form of cheating on programming assignments involves a student initially trying, then
struggling, and eventually giving up and copying a solution from elsewhere.  Regarding such cheating,
Malan [1], who teaches Harvard's CS50, notes "All too often were students’ acts the result of late-night
panic".  Fig. 1 provides an example from real code developed by a student at our university, recorded by
the cloud platform we require students to use, with changes between successive code pairs highlighted.
The student was required to write code that finds the maximum of three input values. The first four code
snippets show the student's code being developed along a normal progression. But, the student
eventually gets stuck, having failed to consider cases where input values are equal. Giving up, the last
snippet shows code the student copied from an online source (which we found online). 

Another common form of cheating involves students not even trying to write the program themselves,
but going straight to online solutions or contractors.

Many programming courses, especially classes with large numbers of students, use automated code
similarity detection tools such as MOSS [2] to help detect potential cheating. Such tools focus on
detecting similar submissions from multiple students. However, for the above situation, similarity



detection fails to detect cases where a student submits a copied solution that is unique, such as code
obtained from today's popular online tutors who provide solutions for just a few dollars and often within
just tens of minutes [3].

if (x > y) {
   cout << x;
}

if ((x > y) & (x > z)) {
   cout << x;
}

if ((x > y) && (x > z)) {
   cout << x;
}

if ((x > y) && (x > z)) {
   cout << x;
}
if ((y > x) && (y > z)) {
   cout << y;
}
if ((z > x) && (z > y)) {
   cout << z;
}

(Drastically changed)
if ((num1 >= num2) && (num1 >= num3)) cout << num1;
else if ((num2 >= num1) && (num2 >= num3)) cout <<

num2;
else cout << num3;

Figure 1: The first four code snippets follow a  normal progression, but the fifth code
snippet labeled Drastically changed shows a drastic change, involving the arbitrary change
in program identifiers, the switch from brace use to no braces, and a different algorithm.

Fortunately, today a different type of automation is possible due to the trend of instructors having access
to the history of a student's code. For example, some instructors require students to frequently commit
code to GitHub [4]. Thousands of courses and hundreds of thousands of students now use auto-graders
[5], and many such auto-graders record the code every time the code is submitted for auto-grading [6].
Some instructors even have the students develop code in IDEs that auto-save the code at regular
intervals, or that save the code every time the student runs the code [7].

Thus, to detect some forms of cheating, a new approach complementary to similarity checking is
possible today. The approach looks across the progression of a student's saved code, trying to detect the
case where a student was submitting a normal code progression, but then (perhaps in "a late night
panic") suddenly submits very different code -- what we call a "drastic change". As with similarity
checking tools, a drastic change detector does not label anything as cheating, but rather simply points



instructors to cases that the instructor (or TAs) may wish to investigate. Thus, a key challenge is to build
a highly-accurate drastic change detector, to avoid wasting an instructor's time with false positives, and
to avoid missing drastic changes as well (false negatives).

This paper presents a tool we have developed, and used in our courses, for examining code progressions
to detect a "drastic" change suggestive of cheating. Our goal is to make this tool freely available to all
programming instructors, akin to MOSS' availability. A key challenge is to eliminate false positives,
because students often make substantial (but not drastic) changes to code during a normal development
process. The paper provides experiments on both synthetic and real code progressions, showing the
algorithm yields good accuracy. The paper also presents an experiment on the prevalence of drastic
change in real student code.

Problem Statement

The input to our tool is a source code progression for each student on a programming assignment, as in
Fig. 2. Student A has m code runs and Student B has n code runs. Code A1 is a link to the entire source
code for Student A's first code run. 

Figure 2: Code progressions for two students on a programming assignment. For
simplicity, we sometimes refer to each code instance as a "run".

We get the code progressions in from zyLabs offered by zyBooks [8], which records source code for
every program submitted for auto-grading, and if the instructor requires the use of the built-in IDE, also
records the source code every time a student runs their program during development. zyLabs allows an
instructor to click a button to download a log file (a lab file) of all student code progressions for any
programming assignment. Our approach also applies to any other tool or scenario where an instructor
can access student code progressions, such as when using other commercial or custom auto-graders
and/or IDEs that make available history of student code, or when requiring students to commit code
regularly to GitHub.

In our problem definition, the approach examines every pair of sequential code instances in the
progression, comparing the pair's first code (Code1) with the pair's second code (Code2). In Fig. 2, the
approach compares Code A1 and Code A2, then Code A2 and Code A3, etc. (In the future, we may
consider a broader definition that at once considers a larger region of the code progression).

For any pair (Code1, Code2), we assign a "drastic change" value between 0 and 1, where 0 means
almost no change, 1 means a very drastic change, and a value of 0.5 or above means an instructor may
wish to examine the code for possible cheating. The approach never concludes cheating itself, but rather,
like MOSS, directs instructors to suspicious cases. A "drastic change" is informally defined as a
suspiciously large change that an instructor may want to inspect for possible cheating. Not all large



changes are suspicious, so the key here is to try to match what instructors would consider possible
cheating. We also classify drastic changes into two categories: initial leaps and gave ups. An initial leap
occurs when the first code run size (lines of code) is bigger than 50% of the first highest-score code run
(the first code run with a full score) size in a student code progression. We skip the initial leap detection
if the first highest-score code run size is less than 15 lines of code or if a student does not have a code
run with a full score. A gave up is a drastic change anywhere in the code progression except in the first
code run. We also have solution hopping as a sub-category for each drastic change category. Solution
hopping is a drastic change in addition to an initial leap or a gave up. Our tool detects all these
categories as a “drastic change”.

Text Comparison Based Solution

Experienced programmers can readily notice drastic changes in code. One indicator might be a sudden
and arbitrary change in program identifiers, such as changing x, y, z to num1, num2, num3 in Fig. 1.
Another is changing code style, such as changing from consistent brace use to no braces in Fig. 1.
Another is using a different algorithm, as in switching from a multiple-if structure to an if-else structure
in Fig 1. Any one such change may not be suspicious, but multiple such changes between two runs
increase suspicion.

We wish to detect drastic changes automatically. Perhaps the most obvious approach to automatically
detecting drastic change (for gave ups and solution hoppings) is to just use a "diff" tool on each code
pair in a student's progression. Diff is a text comparison tool that finds added, changed, and detected
characters between files, and is a built-in utility in most operating systems [9]. We used the diff library
that is part of the Python language [10]. We noticed (from synthetic data analysis, explained later in the
experiments section) that drastic change mostly occurs when 1 - diff’s returned value (the similarity ratio
or simRatio for short) is less than or equal to a threshold of about 0.8. Therefore, we considered any
code progression with a simRatio less than or equal to the threshold as a drastic change, and return 1 -
simRatio as that drastic change value. For simRatio above 0.8, we set the drastic change value to 0,
meaning the code pair is quite similar. Our tool is orthogonal to the used programming language in
programming assignments, and supports any programming language.

Experiments

We ran two experiments to answer two research questions: (1) What is the accuracy (in terms of
sensitivity and specificity) of our tool in detecting drastic changes?, and (2) What is the prevalence of
drastic changes (in terms of initial leaps, gave ups, and solution hoppings percentages)?. We used a
quantitative approach, probability sampling, and statistical analysis (sensitivity/specificity for the first
experiment, and percentage for the second experiment) to conduct both experiments, but used
experimental design for the first experiment, and descriptive design for the second experiment.

In the first experiment to test the efficacy of our tool in detecting drastic changes (Experiment 1, the
tool’s efficacy experiment), we carried out the experiment on synthetic progressions, where we injected
drastic changes into real progressions, and on unmodified real progressions where we manually
discovered actual drastic changes in student code.



In the second experiment to find the prevalence of drastic changes (Experiment 2, the prevalence of
drastic changes experiment), we carried out the experiment on real data.

In each experiment, we used 2 zyBook lab files, one lab file for a 240-student C++ CS1 section
(176-line instructor solution) and and the other lab file for a 430-student Python CS1 section (121-line
instructor solution) in Fall 2019 at two large research universities.

In the tool’s efficacy experiment, for a chosen lab, we sorted the student roster in descending order by
their student ID and picked 20 students who received a full score (10 points) and had no drastic change
in their code progressions after examining their progressions manually.

We randomly divided the 20 students into two groups of 10 students, Group 1 and Group 2. For each
student in Group 1, we replaced the first full-score-code-run of one student with the first
full-score-code-run from the corresponding student in Group 2. The reason for doing so is to introduce
drastic change for each student in Group 1.

For each student in Group 1, we manually examined each code pair in their progression for drastic
changes, and manually recorded the results. The results were 10 students with drastic change. Then, we
ran our drastic change detection tool on both groups to detect drastic changes with a drastic change
value of 0.5 and above. The tool detected 10 students with drastic change in the Group 1 and 10 students
with no drastic change in the control Group 2. This concludes the experiment using synthetic
progressions.

Again, in the tool’s efficacy experiment, for a chosen lab, we sorted the student roster in descending
order by their student ID and picked 30 students who received a full score (10 points) where 10 students
had drastic change, 10 students had no drastic change, and 10 students had big change (we define big
change as having more than 20 lines of code difference between 2 consecutive code runs) after
examining their progressions manually.

The reason for doing so is to have a balanced sample of students where 10 students had possibly drastic
change, 10 students had possibly no drastic change, and 10 students with big change to see how
accurately our tool can discern drastic change from big change.

For each student, we manually examined each code pair in their progression for drastic changes, and
manually recorded the results. The results were 20 students with drastic change and 10 students with no
drastic change. Then, we ran our drastic change detection tool to detect drastic changes with a drastic
change value of 0.5 and above. The tool detected 20 students with drastic change and 10 students with
no drastic change. This concludes the experiment using real progressions.

We conducted the tool’s efficacy experiment twice (Experiment 1 and Experiment 2). For Experiment 1,
we used 30 students from the C++ lab file. For Experiment 2, we used 30 students from the Python lab
file. For Experiment 2, the results for synthetic data manual and tool analysis were 10 students with
drastic change and 10 students with no drastic change. For the real data, the manual and tool analysis
results were 15 students with drastic change and 15 students with no drastic change.



Table 1 presents the drastic changes (gave ups) accuracy using sensitivity and specificity for each of the
2 experiments. For both experiments, the tool averaged 100% sensitivity, and 100% specificity.

In the prevalence of drastic changes experiments, we used the same 2 lab files as they are without
changing any data, so the experiments used real code progressions. However, in this experiment, we did
not limit the experiments to only 30 students per lab, but included all students for a total of 670 students
for the two labs. Table 2 summarizes the prevalence of drastic change experiments in real student data
for Experiment 1 (using the C++ lab file) and Experiment 2 (using the Python lab file).

We believe the high average ratio of initial leaps of 32% might not be all related to possible cheating,
and some might be rather related to students developing their code in their favorite IDEs then copying
their code to the zyBook platform, hence triggering a high average ratio of initial leaps. Instructors can
award students points for developing their code completely inside the cloud platform IDE to reduce the
chance of such inaccuracy.

Table 1: The tool’s efficacy experiments.

Experiment
Synthetic data set
(#students = 20)

Real data set
(#students = 30)

Sensitivity Specificity Sensitivity Specificity

1 100% 100% 100% 100%

2 100% 100% 100% 100%

Average 100% 100% 100% 100%

Table 2: The prevalence of drastic changes (initial leaps, gave ups, solution hoppings) experiments.

Experiment (N = #students) Students with initial leaps Students who gave up

1 (N = 240)

30%
(19% of those then solution

hopped)

5%
(18% of those then solution

hopped)

2 (N = 430)

34%
(28% of those then solution

hopped)

5%
(76% of those then solution

hopped)

Average

32%
(24% of those then solution

hopped)

5%
(47% of those then solution

hopped)



Discussion

Recently, we considered whether the diff that comes with the version control system Git might be more
appropriate for drastic change detection than the Python diff. According to Nugroho [12], Git uses
Myer’s algorithm to produce its diff. We tested Google's implementation of Myer’s algorithm [13]. We
noticed similar results when using Myer’s algorithm for most cases (except for code improvement and
code relocating). Switching to Myer’s algorithm may be considered in future work. Also, code templates
could alter our results. A code template is prewritten code (predefined variables, function layout, etc.)
perhaps provided by the instructor, which students might add to their code, which could increase the
code size if added yielding a high drastic change value. We used a simple method to detect templates by
automatically noting the minimum common code across the top 10% of students who received full
scores and had the smallest first code runs. However, other methods might be more accurate. Future
work may include allowing template code to be provided as input to the tool. Moreover, our tool spends
on average 15 minutes for each lab in the experiment, over 95% of which is spent just downloading code
runs from the zyBooks server. In the future, we plan to investigate ways of detecting drastic change
without having to download all code runs, by downloading a select subset.  Also, the tool only examines
two adjacent code runs at a time for simplicity, rather than examining the entire sequence of code runs,
which could provide more insight into drastic change. 
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Conclusion

Commonly-used automated code similarity detection tools are not effective in detecting possible
cheating in unique solutions. We introduced a tool to supplement similarity detectors to detect possible
cheating using drastic changes in student code progression. The experiments showed that using diff is
accurate for drastic change detection. On average, the tool achieved 100% sensitivity and 100%
specificity. We also ran an experiment to detect drastic changes (initial leaps, gave ups, and solution
hoppings) in real student code. The experiment revealed that 32% of drastic changes are initial leaps
(24% of those solution hopped) and 5% are gave ups (47% of those solution hopped). We plan to make
the tool available for the CS community as a free web tool.
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