
Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright

© 2005, American Society for Engineering Education

Developing an Introductory Software Programming Course for

Engineering Students

Scott J. Schneider

Department of Engineering Technology

University of Dayton

Dayton, OH 45469

sschneider@udayton.edu

Abstract

The ability to effectively develop software programs, from complex software systems to simple

macros, is becoming increasingly important in all engineering disciplines. Educators have

realized this need, and likewise have included software programming in many engineering

curriculums. The initial course in software programming has historically focused on learning the

syntax for a single programming language instead of the skills of logical and algorithmic

thinking and the processes for software development. This paper presents a stepped process for

introducing software programming to engineering technology students.

1 Introduction

Working as a contract engineer for numerous companies has allowed me to interact with both

young and veteran engineers developing software systems for a myriad of industries. This

experience made evident the shortcomings of my software programming education as well as

that of many of my peers. While I was competent with the syntax and structure of programming,

I was ill prepared to tackle large problems or complex systems. My deficiency was in

understanding the software programming process. Those colleagues that obtained an education

in computer science were much better prepared to tackle software design using proven

techniques than their engineer counterparts. The main difference is the “code it first” mentality

that many engineers have when it comes to software development.

The “code it first” philosophy arises from both a lack of knowledge about the software

development process and only being introduced to software programming courses that focus on

developing the syntax skills of programming. During my time in industry, it became evident that

one’s ability to implement a structured software development process is just as critical as one’s

syntax skills. In moving to an academic environment, I once again confronted the “code it first”

mentality.

Computer science and engineering educators have long realized the importance of providing

engineering students with a solid understanding of the software design process
1
. However, the

first course, and often times only course, an engineering student receives in software

programming is typically based on learning a particular programming syntax with little emphasis

placed on understanding the software design process. In teaching an introduction to software

P
age 10.436.1

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright

© 2005, American Society for Engineering Education

programming course, I intend to emphasize the software design process, not just the syntax of a

particular language.

During my first semester teaching the introductory programming course I recognized that not

only do students lack understanding about software design, but they also face a deeper problem:

not understanding the logical and algorithmic thought process. Software engineering is a

discipline about solving problems through the use of computer assistance. Students should

master the concepts of logical and algorithmic thinking, including the ability to break analytical

problems into their logical elements and then to create a sequence of actions for the realization of

a solution.

While the current introductory course is providing students the necessary tools to develop

software programs of problem solutions, it does little to aid the student’s ability to actually

develop the solution. Through repetitive coding exercises some students develop an ability to

solve problems algorithmically, however many never achieve a full ability to do so. Instead of

leaving this critical skill development to chance, the development of a student’s ability to think

in a logical and algorithmic manner needs to be directly emphasized.

2 Background

In the Engineering Technology Department at the University of Dayton an introductory software

programming course ECT361 is offered, which is taken by students in several engineering

technology disciplines. This course is the only software programming course offered from the

engineering technology department. This course has historically been offered as a C++ syntax

course and has a history of being very challenging to all enrolled students, especially those

students not coming from the electrical or computer engineering disciplines. The students from

the electrical and computer engineering technology majors have already had a digital logic

course which has provided them some insight into the logical and algorithmic thought processes

before entering the class.

For many of the students, the key outcome from the course is not mastery of the C++ syntax, but

rather the ability to develop algorithmic solutions to problems that can be implemented in

software using a software design process. Therefore, the two goals in redeveloping this course

are to explicitly focus on developing the students’ logical and algorithmic thinking capabilities

and their understanding and application of the software design process. The students leaving the

course will be able to break a problem into individual components and sequence them together

into an algorithmic solution that they can follow through a systematic design process to the final

coded implementation.

2.1 Historical Perspective

Trying to define the best method for introducing students to software programming is not a new

problem or one that is likely to have a single answer. As the discipline of computer science

evolved, educators focused on ensuring that the science of software programming was paid the

same attention as in other science disciplines. The science of software programming starts with

the logical and algorithmic thought process. The goal is to teach students how they can solve

any problem by finding an algorithmic solution to it
2
. Even though the science of programming

is well understood, the discipline evolved from being considered merely a tool
3
. Therefore, the

P
age 10.436.2

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright

© 2005, American Society for Engineering Education

focus on learning programming syntax instead of algorithmic thinking or software design has a

long history within the computer science discipline. While programming languages and styles

have changed, the same basic problems in teaching the science of software programming still

exist.

The shortcomings of a programming-first approach in the introductory curriculum is outlined in

the ACM Computing Curricula 2001. By focusing on software programming solely, the students

are provided a narrow exposure to the computer science discipline which tends to oversimplify

the design, analysis, and testing activities. The understanding of syntax with inadequate

algorithmic skills leaves students with an improvised method of program development, often

relying on trial and error. However, the programming centric introductory courses do allow

students to acquire new programming skills in a much applied manner
3
.

Most of the research material on introductory programming courses has focused on courses for

students majoring in Computer Science. Therefore, the incorporation of problem solving and

algorithm development and the software design process into the curriculum often takes place

over a several course sequence. For engineering students who have room in their course load for

a single software programming course, these beneficial elements are typically left out or glossed-

over in order to maximize the time spent on learning the syntax of a particular software

language. A syntax only course risks providing a hollow service to the students, especially for

those who do not utilize the language offered in their particular programming course when in

industry. Even those students that do use their programming skills in industry are left to learn

about the software development process in an industrial, non-structured, non-scientific

environment which can often lead to poor habits.

2.2 Software Programming Educators Survey

A survey conducted of engineering technology professors in the United States that teach an

introductory software programming course revealed numerous opinions and methods for

providing this training. From the responses received, a wide variety of methods and opinions in

how to best teach an introductory software programming course were noted. Responses ranged

from those faculty members who have developed a multiple course sequence with an

introductory course solely focused on teaching algorithmic development, to those who use either

an academic programming language or one which is easier to grasp, to those that have come to a

realization that students are unable to be taught the fundamental logical or algorithmic thought

processes. The greatest success seemed to come from the respondents who have a pure logics

and algorithms course in their curriculum.

In our Engineering Technology Department we must provide a sufficient proponent of syntax in

the course since this course is the only one that many of our students receive in software

programming. Having a hands-on and applied curriculum precludes us from a strictly logic and

algorithm development course. The ability to break problems apart and develop algorithms is an

important outcome. However, our students also need to have a mastery of the code writing and

debugging processes within the software development design process.

Another topic that came up within the survey was on the poor choices for text books available

for introductory programming courses. Many respondents referred to a lack of good syntax

P
age 10.436.3

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright

© 2005, American Society for Engineering Education

based books that provide a sufficient amount of material related to program design and

algorithmic development, leaving dedicated professors on their own to develop the material.

Some good material does exist, however not in all programming languages, or sometimes in a

syntax-independent fashion which serves primarily the Computer Science Departments.

3 Course Methodology

In an attempt to provide a fuller learning experience to our introductory software programming

course ECT361, several changes were made to the curriculum. These changes are being

introduced over a two semester period. The fall 2004 semester had an extensive software

development component added. The emphasized logical and algorithmic thought process

development is being introduced in the winter 2005 semester. The new course outline is:

1. Logical and algorithmic thinking and problem solving

2. The programming environment

3. Variables and storage classes

4. Keyboard input and screen output, input and output formatting

5. Lexical elements and operators

6. Arrays, pointers, and text strings

7. The software development process

8. Control structures and logical operators

9. Functions, recursion, references, scope

10. Formatted input and output from files

Even though the C++ syntax proves to be more difficult to master than other popular

programming languages, the course retained the C++ language for this course given feedback

from the Engineering Technology Department’s Industrial Advisory Committee. Being the sole

programming course, the students do need an appreciable experience with a common

programming language that they may encounter in industry. An important aspect of the

students’ learning process is the ability to implement the algorithms that they develop
3
.

3.1 Incorporating Software Development

A goal in revamping the ECT361 curriculum is to retain the same level of mastery over the C++

syntax as was covered in the previous course. Providing adequate time for a sufficient

introduction to the program design process without sacrificing the syntax content covered is

challenging. The focused software development learning is introduced before and in conjunction

with control structures since the non-sequential nature of control structures is known to be a

difficult topic for students to master. The students’ ability to separate and tackle the problem

independent of the syntax would aid in their mastery of the material, allowing them more time to

focus on learning the syntax.

While programming design is taught through exercises primarily in conjunction with learning the

syntax for control structures, the design philosophies are all introduced prior. Requiring that

P
age 10.436.4

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright

© 2005, American Society for Engineering Education

students perform program design does not lead to true design practices by the students.

However, outlining the design process and highlighting it conceptually using real-world

problems can provide enough of a solid foundation to cause students to understand the benefits

from committing to the full design process
4
.

The formal processes that exist for software development may take several forms and typically

include the key steps of problem definition, solution outline, algorithm development and

analysis, and conclude with code writing and testing. Following such a process allows the

engineer to focus on developing the algorithms without worrying about code syntax, and

likewise allows the software syntax to be created without concern for the correctness of the

underlying algorithms.

Standards exist for program design, including the use of the Unified Modeling Language (UML).

The standard notations for activity diagrams and the general principles for developing algorithms

using pseudocode are provided to the students as references. Since program development is a

personal experience, and often non-standards based methods are used in industry, I feel that the

process is more important than the method. Students are, however, required to perform three key

steps during their program development process: break the problem into its respective inputs,

outputs, and processes, outline the algorithm, and finally test the algorithm.

The best method found for demonstrating the importance of program design to students is

through the use of class-participation programming exercises. During this process, students

work with the instructor in solving a problem through the creation of a software program. The

problems are tackled both with and without going through the software development process to

highlight how the time spent in preparing to write the code does save time and produce cleaner,

more efficient code. One key aspect demonstrated to students is that catching and fixing

algorithmic errors is much easier if done prior to the code writing phase. Once the algorithm is

coded it is often difficult to debug the syntax and algorithm independently to determine the root

cause of a problem.

A full program development process is required for all homework and project assignments that

result in a code writing exercise. Providing a consistent emphasis on the program development

process is essential. The consistent emphasis on program design throughout the later part of this

course ensures that every student has had ample time to develop their own strategy for breaking

problems apart and creating algorithmic solutions to them.

3.2 Teaching the Algorithmic Thought Process

Some educators are unsure of the ability to teach logical and algorithmic thought processes. I

feel that these skills can be learned and an attempt should be made to help foster them early in

the course for maximum benefit. In teaching the program development process, the student’s

ability to logically break apart problems and develop algorithmic solutions did increase.

However, given the diverse technical background and previous programming experience that our

students have, it is still necessary to implement a focused algorithmic development component to

this course. Research demonstrates a direct correlation between a student’s experiences with

software programming to their performance in an introductory programming course
5
. If

students are able to focus on developing their logical and algorithmic thought processes early-on,

P
age 10.436.5

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright

© 2005, American Society for Engineering Education

it stands to reason that they would be able to focus more directly on the syntax during the

remainder of the course.

Learning a computer programming language is not the same as learning a foreign language,

though often they are taught in a similar manner. With foreign languages, the syntax is often

emphasized since, as humans, we already know how humans think and therefore, understand

how to converse with them regardless of the language which they speak. However, before trying

to talk to a computer one must first understand how a computer thinks to enable one to

communicate with it effectively. The students’ ability to develop algorithmic processes is

critical at this point.

The first couple weeks in this course are spent honing the students’ problem solving skills. The

primary purpose is to force students to think in a logical manner similar to how a computer needs

to be commanded to complete a given task. In order to achieve maximum utilization from this

development time, the programming environment that is used for the course is also introduced.

Students are required to provide their algorithmic solutions in the form of commented code. This

added step, while slightly cumbersome for the students, allows them to use this time to become

familiar with the coding environment that they will be using later in class. This process also has

the added benefit of helping the students to feel like they are still accomplishing something and

not just performing busy-work.

4 Outcomes

The inclusion of the programming design process into the course curriculum resulted in no loss

in syntax material able to be covered. In fact, several concepts were able to be investigated more

fully since the students are better able to directly focus on the syntax. Even though the difficulty

of the syntax learned after the introduction to the program design process increased, the class

performance rose as indicated by a rise in their cumulative grades. Student surveys indicate an

overwhelming support for the benefits of using a software design process. Most notably, in the

final project, students are asked to develop a complete software program including complicated

programmatic and mathematical algorithms. Several students explicitly commented on the

benefits of performing the program design prior to starting the code writing. One student

commented “It proved that the development process is necessary, especially with programs that

make use of more complex algorithmic processes.”

Even though time is spent to define the design process, and students seemed to “buy-in” to the

benefits of it, some students developed their design material from the code instead of writing the

code from the design. Reviewing how other instructors have solved this problem, I decided to

administer two homework assignments, one for the program design and another one for the code.

The code homework will be collected one week after the program design
4
.

This course is offered twice a year and data is being collected to monitor the impact of this

methodology on students’ success in this course and in their logical and algorithmic capabilities

as well. Preliminary results to a prepared survey focusing on students’ self perceived difficulties

with the course after the fall 2004 offering indicate that the students overall feel more confident

with their problem solving capabilities than those students from the previous offering where the

course was taught using a syntax only method. However, performance disparities still exist

P
age 10.436.6

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright

© 2005, American Society for Engineering Education

between students from the electrical and computer engineering technology programs and those

from the other engineering technology disciplines. The direct focus on logical and algorithmic

thinking in the beginning of the course will help reduce this disparity, allowing those students

outside the electrical and computer engineering technology programs to catch-up.

5 Conclusion

The question of how to teach an introductory software programming course is not new, and does

not have a single, easy answer. Though most of the research addressing this issue is focused on

the computer science curriculum, it provides valuable methods for achieving optimal coverage in

an introductory course for engineering students. The major goals in developing a new

curriculum stem from an awareness of the lack of preparation of engineers entering industry to

affectively perform software development. Initial feedback from students has shown awareness

to the benefits of following a structured program development process. Another problem in the

course results from previous offerings showed a poor performance among the students in

programs outside of electrical and computer engineering technology. A new course curriculum

focused on teaching logical and algorithmic thought processes has yet to be evaluated, but is

intended to help mitigate this problem.

Bibliography

[1] W. Hankley. Software Engineering Emphasis for Engineering Computing Courses. Proceedings of the

American Society for Engineering Education Annual Conference, document 2305, June 2004, Salt Lake City, UT.

[2] D. Gries. What Should We Teach In an Introductory Programming Course? Proceedings of the fourth SIGCSE

Technical Symposium on Computer Science Education, 6(1), pages 81-89, 1974.

[3] Computing Curricula 2001, Chapter7 Introductory Courses,

http://www.computer.org/education/cc2001/final/chapter07.htm.

[4] A. Ghafarian. Teaching Design Effectively In The Introductory Programming Course. The Journal of

Computing in Small Colleges, 16(2), pages 203-210, 2001.

[5] E. Holden and E. Weeden. The Experience Factor in Early Programming Education. Proceedings of the 5
th

Conference on Information Technology Education, pages 211-218, October 2004, Salt Lake City, UT.

Biography

SCOTT J. SCHNEIDER is an assistant professor of Electrical and Computer Engineering Technology at the

University of Dayton. He received his MS in Electrical Engineering from The Ohio State University. His areas of

interest include software development, embedded systems, and automotive technologies. He has designed and

implemented advanced embedded systems for the communications and automotive industries.

P
age 10.436.7

