
AC 2007-2819: DEVELOPING BASIC CRYPTOGRAPHY LAB MODULES WITH
OPEN SSL

Ed Crowley, University of Houston

© American Society for Engineering Education, 2007

P
age 12.490.1

Developing Basic Cryptography Lab Modules with OpenSSL

Perceived topic: Innovative Teaching

Keywords: Security, Cryptography, Open Source, Lab Development, Networking

While there has been a recent proliferation of quality cryptography texts, there remains a

shortage of quality applied laboratory exercises and related support materials. In part, this

is due to the cost and availability of commercial cryptographic software. In part, this is

due to the time and resource commitment required to develop laboratory modules.

Utilization of free open source software can help offset related monetary costs. While

there are many open source cryptographic tools, not all tools are appropriate for “hands-

on” learning activities. For example, our lab modules are designed to make cryptographic

processes visible to students; while, tools like PGP and GPG are designed to make

cryptographic processes transparent to users.

This paper presents the author’s experiences developing and utilizing applied

cryptographic lab modules. The primary cryptographic software utilized, in these

modules, is OpenSSL. This is an Open Source tool kit available for both Linux and

Windows. In addition to OpenSSL, the modules utilize a variety of other open source

tools including Ethereal (WireShark), net cat, Firefox, and Apache.

Because the objectives are curriculum dependent, it would be helpful to review the

curriculum within which our cryptography course evolved.

Our Applied Cryptography Class

Our College is a small college within a large university. In addition to other goals, our

applied security program is designed to prepare students to provide enterprise security

assessment and evaluation. Expected job titles for our graduates include security

investigator, manager, and auditor.

The scope of the applied cryptography class includes cryptographic services required to

securely store and transmit confidential information. It also includes related

cryptographic services such as those that provide integrity, authentication, and

nonrepudiation. Specific topic areas include: symmetric and asymmetric cryptography,

digital fingerprints, message authentication codes, digital signatures, certificates, public

key infrastructure, and virtual private networks (VPNs). Laboratory activities that enable

students to apply related cryptographic principles augment conventional class activities.

In a classical cryptography course, learning goals would include the mathematical

analysis of related cryptographic number theory. While we introduce our students to the

basic mathematical foundations of specific algorithms, an in-depth examination of

number theory wouldn’t necessarily contribute to our program’s applied goals.

P
age 12.490.2

Rather than researching new cryptographic algorithms, our students focus on evaluating

cryptographic implementations in the context of particular enterprise security goal(s). In

these evaluations, our students draw on existing standards and standard organizations

such as the Security Requirements for Cryptographic Modules (FIPS-140) [2] and the

National Institute for Standards and Technology (NIST). A look at sample learning goals

for our laboratory module’s will help illustrate this.

Sample Module Goals

At the end of this class, students will be able to:

1. Apply cryptographic services to:

a. Conceal information within a file (encryption).

b. Verify a file’s integrity

c. Authenticate a file’s origin

2. Provide evidence of non-repudiation by creating and utilizing an RSA digital

signature

3. Employ asymmetric technology to encrypt a symmetric key

4. Utilize symmetric, asymmetric, and hybrid cryptographic technologies.

5. Define, explain, and demonstrate relevant cryptographic services including

confidentiality, integrity, authentication, and non-repudiation.

6. Demonstrate and explain relevant cryptographic mechanisms including

encryption, hashing, message digests, message authentication codes (MACs), and

digital signatures.

7. Explain how symmetric and asymmetric technologies combine in a hybrid

cryptosystem.

8. Create an encrypted communications channel that provides confidentiality.

9. Compare and contrast symmetric and asymmetric cryptography

10. List and discuss cryptographic vulnerabilities including key management,

randomness, and speed

11. Generate symmetric keys and asymmetric key pairs

12. Create an unsecured communications channel between two computers.

13. Communicate securely through an unsecured communications channel.

When presented to the students, these module goals are accompanied by an overview.

Let’s look at the overview.

Cryptography Overview

As cryptography evolved, it’s definition also evolved. Originally, cryptography’s

definition was derived from its literal meaning, that is, from the original Greek, as “secret

writing”.

Over time, as cryptography continued to evolve, the definition broadened. For example, ,

the National Institute for Standard and Technology (NIST) now defines cryptography as

“… a branch of mathematics that is based on the transformation of data and can be used

to provide several security services: confidentiality, data integrity, authentication,

authorization and non-repudiation.”

P
age 12.490.3

In various forms, cryptography has been employed for over 4,000 years. Until the mid

1970s, cryptography’s primary security service was that of confidentiality i.e. protecting

secrets. During that time, the predominant cryptographic technology was symmetric or

single key, cryptology. Historically, key management problems associated with

symmetric cryptography, limited cryptographic applications primarily to large, well

funded, governmental organizations.

However the, relatively, recent discovery of asymmetric cryptography has dramatically

impacted the way that cryptography can be applied. Specifically, asymmetric key

cryptography eliminates the key management problem. Further, asymmetric cryptography

is not limited to providing confidentiality services.

In addition to confidentiality, asymmetric technology can provide integrity,

authentication, and non repudiation security services. Asymmetric cryptography has also

lowered the costs associated with enterprise level cryptographic implementations. The

argument could be made that without asymmetric cryptography, ecommerce would not be

feasible.

Because of these advantages, asymmetric cryptography is now widely employed.

However, for bulk encryption asymmetric technology is much slower than symmetric

technology. Consequently, asymmetric cryptography is most often utilized in a hybrid

system that combines the strengths of both symmetric and asymmetric cryptographic

technologies.

For example, in a hybrid system symmetric cryptography is used for bulk encryption

while asymmetric cryptography is used for key exchange and temporary session key

encryption. Understanding both asymmetric and symmetric technologies as well as how

they combine into a hybrid system can provide a foundation for a variety of security

technologies and protocols including Secure Session Layer (SSL), Public Key

Infrastructure (PKI), and Virtual Private Networks (VPNs). As Figure 1-1 shows,

symmetric, asymmetric, and one way functions provide a foundation from which learning

modules that include Basic Protocol Building Blocks, Applied Protocols, and Secure

Protocol Applications can evolve [1].

P
age 12.490.4

Figure 1-1 Crypto Basics

Our lab modules provide students with “Hands-on” experience with cryptographic

services. In these modules, students apply symmetric, asymmetric, and hybrid

technologies as well as one way functions. Lab activities focus on four cryptographic

security services and their related mechanisms. Table 1-1 shows these services and

mechanism.

Service Mechanism Definition

confidentiality encryption/

decryption

The property that sensitive information is not disclosed

to unauthorized individuals, entities,

or processes. (FIPS 140-2)

integrity Hash/Digest

MAC

Digital Signatures

The property that sensitive data has not been modified

or deleted in an unauthorized and undetected manner.

(FIPS 140-2)

authenticity Hash

MAC

Digital Signature

Certificates

PKI

An assurance of authenticity is provided using

authentication controls, which protect a communication

system against acceptance of a fraudulent transmission

or simulation by establishing the validity of the

information content and the originator. (NIST 800-21)

non-repudiation MAC

Digital Signature

Certificates

PKI

Non-repudiation services provide assurance of the

origin of data to both the receiver and a third party. The

objective is to provide evidence to counter denials that

the sender participated in a specified transaction. (NIST

800-21)

Table 1-1 Security services and mechanisms.

Specific security services are obtained through the application of specific cryptographic

mechanisms. These mechanisms may employ symmetric or asymmetric technologies.

They may also combine into a hybrid system. As the modules progress, students gain

P
age 12.490.5

experience with specific security services and mechanisms. Students employ these

technologies and mechanisms to provide confidentiality, integrity, authenticity, and non-

repudiation security services.

Lab Modules

Related laboratory activities were developed in modules. Each module has its own

objectives and procedures. Figure 1-1 presents a context of how additional modules, after

Crypto Basics, might evolve.

In addition to extensibility, modules facilitate use of the activities in multiple courses.

Since each module demonstrates specific learning objectives, they can be mixed and

matched to separate course level objectives. Since each module is complete, they may be

also be presented in different course without concern for undocumented dependencies.

Though, they are dependent upon the skill level of the student within each class. Along

with these attributes, module learning objectives are designed to be easily measured.

The next section presents several modules that we have developed and successfully

utilized.

Module Examples

Part Zero – Introduction

Objectives

At the end of this module, you will be able to:

• Access and use OpenSSL from the command line.

• Access OpenSSL help (man) pages from the command line.

• Locate and access online sources of OpenSSL documentation.

• Download related cryptographic standards from the National Institute for Standards

and Technology (NIST).

Procedure

This module introduces you to the OpenSSL Cryptographic Toolkit. Here, you will

access relevant help (man) pages and learn to work with OpenSSL from the command

line. You will also learn to identify relevant Internet based information sources. At the

end of the lab, you will download, and read, the “Security Requirements for

Cryptographic Modules” standard from the National Institute for Standards and

Technology (NIST) [2].

First, open a console window.

At the prompt, type:
man openssl

After you have read the general man pages exit from them. You may exit from the Man

Pages by either pressing the q key or pressing both the ctrl and the z keys.

P
age 12.490.6

In later activities, you will be using the enc command. Now, is a good time to become

familiar with this command. To learn more about the encrypt command type:
 man enc

Now, lets look a little closer at OpenSSL. While you have the manual pages showing in

one console window, open another console window. At the prompt in the new console

window, type the following commands: (Note: be sure to press return at the end of each

command.)

openssl version

openssl list-standard-commands

openssl list-message-digest-commands

openssl list-cipher-commands

openssl ciphers –v -ssl3

Open a navigator window and browse to the OpenSSL web site. In the browser’s URL

text box, type:

www.OpenSSL.org

Check the available documentation. Also check for other sources of OpenSSL

information such as forums and mailing lists.

Now, browse to the National Institute of Standards and Technology at:

http://csrc.nist.gov/publications/fips/

Download and save FIPS 140-2, the “Requirements for Cryptographic Modules”. If you

don’t have permanent storage available at your workstation, use a web based service to

email the pdf file to yourself.

Before proceeding to Part One, you should check the end of lab questions to make sure

that you can answer them. You will also want to save relevant screen shots for your

online lab narrative.

Part One –Symmetric Cryptography

Objectives

At the end of this module, you will be able to:

• Use OpenSSL to generate a pseudo random number

P
age 12.490.7

• Generate DES keys.

• Utilize DES to encrypt and decrypt documents.

• Download and encrypt an RFC.

• Use the cat command to type a file to the console.

• Create file hashes that demonstrate file integrity.

Figure P 1-1 Encryption and Decryption

During this step, you will generate a 56 bit DES key. Then, you will use that DES key to

encrypt and decrypt an ASCII text file. After that, you will employ an MD5 hash to

demonstrate that the unencrypted file is identical to the original text file.

For this lab module, we will use the IETF’s RFC3766 as our text file. To obtain the file,

launch your browser and go to the rfc editor site at the below listed URL. Once you are at

the web site, locate rfc3766.

ftp://ftp.rfc-editor.org/in-notes/

To download this document, right click on the rfc3766.txtlink.

Select the “Save link as” option.

Download the file as RFC3766XX.txt where XX are your initials.

Note One

Accept the default download directory. This will be your home directory. Since you are

user Knoppix, your home directory is also named “Knoppix”.

Note Two

Be sure to change the download file name to rfc3766XX where XX are your initials.

Note Three

Accept the default file type (rfc3766XX.txt). Note that while Linux does not require file

types, we will use them here to distinguish among several versions of this file.

Now, open a console window. Automatically, you will be placed in your default home

directory. Since, by default, you are user Knoppix, this will be the Knoppix directory.

When you list the files in your home directory, you should see the RFC that you

previously downloaded.

P
age 12.490.8

ls -al

While you are in your home directory, create a file containing a pseudo random number

56 bits long. Later, you will use that number as your DES key. In an open console

window, enter:

openssl rand -out des_keyXX 56

cat des_keyXX

Notes

1. In the above command lines, XX represents your initials.

2. Make sure that your initials are different than your partners.

3. As Linux is case sensitive, the case you choose for your initials is significant.

Now, encrypt RFC3766.

openssl des -e -a -kfile des_keyXX -in rfc3766XX.txt -

out rfc3766XX.enc

(Note, enter the above command listing on a single line.)

To make sure that the encryption operation worked, list the encrypted file.

cat rfc3766XX.enc

Now to provide assurance that the process works both ways, you should decrypt the .enc

file that you just created. After you decript the file, go ahead and list it on your console.

openssl des -d -a -kfile des_keyXX -in rfc3766XX.enc -out

rfc3766XX.dec

cat rfc3766XX.dec

You would expect the file rfc3766XX.dec to be identical to the file that you downloaded

rfc3766XX.txt. Since identical files will have identical message digests, you can prove

that the files are identical by creating and comparing each file’s message digest. Enter the

following command lines. Then, compare the generated digests (hashes).

openssl md5 rfc3766XX.txt

openssl md5 rfc3766XX.dec

Part One A-- Symmetric Key and File Exchange, Symmetric Decryption

Objectives

At the end of this module, you will be able to:

• Use Apache to distribute an encrypted document.

• Use the Net Cat Utility to distribute your DES Key.

• Use the Ethereal (WireShark) Packet Analyzer to capture packets.

• Demonstrate file integrity through the creation of file hashes.

P
age 12.490.9

For this lab module, you will exchange encrypted files and DES keys with your lab

partner. Your encrypted file will be distributed through port 80 on the web. Your DES

key will be distributed through Net Cat using whatever port your select.

After the exchange, you will have two different encrypted files, yours and your partners.

You will also have two different DES keys, yours and your partners. Consequently, you

will need to be very careful to keep the names of the files and keys organized. In order to

succeed in this module, you will also need to have good communications with your lab

partner.

To ascertain the security of each communications channel, you will employ the Ethereal

(WireShark) packet analyzer. With this tool, you will capture each TCP stream. After you

have captured the appropriate packets, you will emulate an intruder and attempt to

reassemble the original files from the captured packets.

Prior to beginning the lab, you must exchange IP addresses with your lab partner. You

can determine your IP address by opening a console window and typing:

ifconfig

Since you will be using your web server to exchange the encrypted file with your lab

partner, you now need to move your encrypted file from your home directory to your web

server’s root directory.

To do this first, from the KDE menu, select KNOPPIX, from there, select root shell. This

will open a shell with root privileges. Once that shell is open, copy the encrypted file

from your home directory to your web server’s default directory.

cp rfc3766XX.enc /var/www/rfc3766XX.enc

Now, you are ready to start your web server.

su

apache start

To make sure that your web server is running, start Netscape Navigator. Place 127.0.0.1

in the browser’s address box and press the Return Key. At this point, you should see the

default Apache homepage in your Navigator Window.

You will now need to edit the web server’s default home page. For this operation, use the

Kwrite editor. You will need superuser privileges to edit the default home page. Open a

console window, type:

su

kwrite

P
age 12.490.10

… use the File Open Menu selection to open the “index.html” file. You will find this file

in the /var/www directory.

Now, in the open kwrite session, edit the index.html. First, delete everything in the file

after the first <body> tag and prior to the list of links (tag> at the page bottom.

Then, edit the first link in the list to point to the encrypted file.

<A<A<A>>>RFC3766

After you have deleted the unneeded portions of the original “index.html” file and added

the link to your encrypted file, save the index file. Use the default file name. Use the

default directory. (Note, if you are using super user privileges and still have problems

saving the index.html file simply save the file under a different name

You should further customize the default home page. At a minimum, you should add

your name in a level 1 header at the top of the page. This will provide you lab partner

with assurance when they go to your page to download your encrypted file. You should

also add other relevant information.

<h1>Uno Kitty</h1>

Now, have your partner navigate to your web server with their browser. They can do that

by entering your IP address in the address box of their web browser. Once there, they

should download the rfc that you encrypted to their machine.

Now, you will use NetCat to create a connection between your and your lab partner’s

computers. This connection will facilitate your key exchange.

During this exchange, the partner that is furnishing the key will be the server. The partner

that is receiving the key will be the client. Prior to starting this step, begin capturing

packets with Ethereal. You will find it useful to employ a display or a capture filter that

limits the display or capture to your partner’s IP address. You will also find it useful to

have Ethereal update the list of packets in real time.

Open a console window, and type:
su

ethereal

After the Ethereal Interface opens, first choose “Captures” pull down menu. Then, choose

the Options choice. Select the appropriate check box to select the “Display packets in real

time” option. On a busy network, you may also want to set the display filter to only

display packets from your lab partner.

Now, each lab partner needs to set up their NetCat Server. Part of the set up is the

selection of an upper level port with which to open communications. You will need to

select a unique port and to communicate that port number with your lab partner. It is

P
age 12.490.11

important to communicate the appropriate port number to your lab partner. Before

proceeding, please coordinate with your lab partner and fill out the following table.

 IP Address Server Port Client Port

You

Your Partner

Table 1-2 NetCat Planning Table

Open your NetCat server connection by typing:

nc –vvn –l –p XXXX < des_keyXX

XXXX is the number of the port that you will be opening for your server. Be sure to

choose a higher level (over 1024) port. And be sure to let your lab partner know which

port you have chosen.

To establish your client connection to your lab partner type:

nc aaa.bbb.ccc.ddd YYYY > des_keyPP

Where aaa.bbb.ccc.ddd is the ip address of your partner’s server and YYYY are the upper

level ports that your lab partner has opened on their NetCat server.

You should now exchange keys with your partner. That is, your partner should send their

key to you and you should send your key to your partner. If you have chosen Ethereal’s

“View packets in real time” option, you should see the TCP connection in Ethereal’s

capture packet window. After the key exchange is complete, press Ctrl-C to break the net

cat connection.

At this point, you should stop your packet capture and save the file as part 1A. This

packet capture will contain the passwords. At the end of the lab, you should see if you

can recover the key from the packets. Hint, you may have to choose binary file type to

save the key. What does this experience tell you about the security of conventional

network connections?

Now, make sure that you have captured your partner’s key. Note, if you see a file with

the appropriate name but a file size of zero, then your key exchange failed and you need

to repeat the process.
ls -al

Now, that you have evidence that the file transfer was successful, use your lab partner’s

key to decrypt the encrypted rfc that you downloaded from your lab partner’s web site.

openssl des -d -a -kfile des_keyPP -in rfc3766PP.enc -out

rfc3766PP.dec

P
age 12.490.12

Now, let’s create evidence that will prove that the decrypted rfc is identical to the original

unencrypted rfc. That is, you will create a hash of booth files. Compare it to the original

file’s hash.

openssl md5 rfc3766XX.txt

openssl md5 rfc3766PP.dec

Conclusion

To understand cryptographic basics, a student needs to have a first hand knowledge of

basic cryptographic activities and services. These activities include generating random

numbers as well as generating and applying symmetric keys and asymmetric key pairs.

Basic services include confidentiality and integrity. Services covered by other modules

include authentication and nonrepudiation.

Antidotal student response to the lab modules has been enthusiastic. The fact that the

labs are open source and LiveCD based means that the students can repeat and verify

their lab work at their home or at their work. It also means that the students can freely

distribute the software utilized within the modules. An unintended side effect is that other

professors have adopted existing lab modules into other classes.

There is however much further work to be done. One task would be to create a custom

LiveCd that would contain lab modules and associated class materials. Another task

would be to create more modules that would extend the lab’s scope. At present, we have

lab modules for all of the Basic Topics in Figure 1-1. We also have modules that contain

a subset of the Protocol Building Blocks.

In our class, the students also create their own projects. Several students have extended

the class activities to demonstrate other software such as TrueCrypt. As the class evolves,

our anticipation is that it the utilization of Open Source Software will contribute to the

class becoming more project orientated.

Bibliographic Information
1. Dark, M, Morales, L, Justice, C, A Methodology for Developing and Disseminating Curriculum

Resource material in Information Security, CISSE 2005.

2. FIPS PUB 140-2: Security Requirements for Cryptographic Modules, National Institute of Standards

and Technology, May 25 2001

3. Kar, D, Teaching Cryptography in an Applied Computing Program, Journal of Computing Sciences in

Colleges, 2006.

4. Mel, H, Baker, D, Cryptography, Decrypted, Addison-Wesley, 2001.

5. OpenSSL, http://www.openssl.org, last visited on Jan 14, 2007.

6. Stieber, A, OpenSSL Hacks, Linux Journal, July, 2006.

7. Tjaden, B, Fundamentals of Secure Computer Systems, Franklin, Beedle & Associates, Inc., 2004.

P
age 12.490.13

8. Viega,J,Messier,M, Chandra, P,Network Security with OpenSSL Cryptography for Secure

Communications, O'Reilly, 2002.

P
age 12.490.14

