

Division of Electrical, Communications, and Cyber-Systems (ECCS)

Robert J. Trew Division Director

ASEE ERC

ECCS Mission

- Address <u>fundamental research issues</u> at the nano, micro, and macro scales underlying device and component technologies (electronic and photonic devices), energy and power, controls, networks, communications, computation, and cyber technologies
- Support <u>integration of systems principles</u> in complex engineering systems and networks for a variety of applications areas
- Ensure <u>education of a diverse workforce</u> to meet the technological challenges of a 21st century global economy

Electrical, Communications, and Cyber Systems (ECCS)

Division Director: Robert Trew

Senior Engineering Advisor: Lawrence Goldberg

Electronics, Photonics and Device Technologies (EPDT)

Pa

- Rajinder Khosla
- MEMS/NEMS Systems-ona-Chip:

Integrative, Hybrid and

Complex Systems (IHCS)

- Diagnostic and Implantable Devices;
- Environmental Monitoring:
- Micro Power and Energy
- Biological & medical devices

Andreas Weisshaar

- RF to Optical Communication Systems;
- Inter- and Intra-chip Communication/Network;
- Mixed Signal Systems;
- Millimeter Wave and Terahertz Systems

(Open)

- Cyber Physical Systems;
- Next-Generation Cyber Systems;
- Signal Processing

Power, Controls and Adaptive Networks (PCAN)

(Open)

- Optoelectronics/Photonics:
- Nanophotonics;
- Plasmonics and Metamaterials;
- Large-Scale Photonic Integration;
- Ultrafast Phenomena

Samir El-Ghazaly

- Micro/Nanoelectronics;
- Advanced Integrated Circuits;
- Beyond Silicon CMOS;
- Quantum-Level Devices
- Electromagnetics/Microwave/THz simulations and models

Pradeep Fulay

- Molecular Electronics;
- Organic and Flexible Electronics;
- Energy-Efficient Green
 Electronics and Photonics

Usha Varshney

- Bioelectronics and Biomagnetics;
- Spintronics and Magnetics;
- Sensor Technologies

Radhakisan Baheti

- Control Theory and Applications:
- Networked Control Systems;
- Sensing and Imaging Networks;
- Robotic and Embedded Systems
- Modeling/Control of Flexible Electric Power Grids, including Micro Grids, Smart Grids;

George Maracas

- Photovoltaics and novel energy conversion devices
- Alternate energy devices/systems
- Power and Energy Systems:
- Renewable/Alternative Energy Conversion and Storage;
- Interdependencies of Critical Infrastructures

Paul Werbos

- Neuromorphic Engineering;
- Bio-Inspired Complex Systems;
- Quantum Systems Engineering;
- Multi-Scale Modeling/Simulation of Devices and Systems

Funding Rates – Research Grants ECCS, ENG, NSF

Funding Rates – CAREER Awards ECCS, ENG, NSF

Emerging Emphasis Areas for ECCS

- Nanoelectronics
 - > SEBML
 - > QISE
- Energy and Sustainability
 - > Smart Grid
 - > Photovoltaics
 - Alternate Energy
- Cyber-Physical Systems (CPS)
- Innovation Ecosystem

Science and Engineering Beyond Moore's Law (SEBML)

- Doubling ENG support to \$20 million for investigations into:
 - Devices
 - Systems and architecture
 - Multi-scale modeling and simulation research
 - Quantum information science and engineering
 - Design of efficient and sustainable manufacturing equipment, processes, and facilities

Smart Grid

- What's a 'smart grid'?
 - > Integrate information technologies with the electrical power infrastructure
 - Make use of the internet
 - Integrate computers and controllers in household heating/air conditioning units, appliances, etc.

Mhh5

- 'Real time' control of electrical consumption to balance load, optimize electrical energy use, and minimize loss and disruption, as well as cost
- Integration of alternate energy sources (e.g., photovoltaics, solar panels, wind generators, etc.)
- > Enable 'two-way' power flow (two-way meters)
- The Smart Grid is a conservation technology

What's a Cyber-Physical System?

- A cyber-physical system (CPS) is a system featuring a tight combination of, and coordination between, the system's computational and physical elements
- CPS originated from, but is now greater than, embedded systems
 - First generation embedded systems emphasized the computational elements, with less focus upon the strong link with the hardware
 - CPS emphasizes the network of interacting elements, rather than focusing upon stand alone elements

CPS at NSF

- CPS at NSF is a joint program with strong collaboration between the CISE and ENG Directorates
 - > CISE focuses upon the intelligent, computational, and networking aspects
 - ENG/ECCS focuses upon the integration and hardware aspects
- Budget
 - > FY09: \$45M, including \$15M ARRA funds
 - > FY10: anticipate between \$30M to \$34M