Session

Don’t be a Brute: A Programming Assignment for Exposing
Undergraduate Students to Computational Complexity and
Heuristic Problem-Solving Approaches

Tom Wulf

College of Applied Science, University of Cincinnati

Abstract:

A programming assignment that was developed for an undergraduate course in computer security
in which students simulate a brute force password guessing attack is described. This exercise
helps students to understand issues of computability, re-enforces the basic mathematics of
combinatorics, and provides a springboard for discussions of heuristic versus brute-force problem-
solving approaches. In the context of a course on computer security, the assignment serves to
tangibly demonstrate issues with password selection and user policies that apply to this issue.

Undergraduate students in Computer Science Technology and Information Engineering
Technology do not receive the same training in the formal analysis of algorithms that students in
standard theory based Computer Science programs do. It is clear, however, that IT students
must develop a basic understanding of problem complexity issues and heuristic problem solving
approaches to be successful in their careers. The exercise described in this paper gives students a
hands-on feel for computational complexity through a programming assignment which simulates a
brute-force, password-guessing attack.

Preliminaries: Class Lecture and Readings

In class lecture and assigned readings, students were first introduced to a brute-force password
guessing approach in which every possible password string using a finite symbol set for strings of
a specified length or range of lengths is generated. Testing for the actual password string then is
simply an exhaustive linear search through this generated set. The first issue required in order to
examine the magnitude of this task is to determine the cardinality of the set to be tested. This
provides an opportunity to review the multiplication rule for the cardinality of permutation sets
with the students. A hypothetical operating system that restricts the user to choose password
strings of length 8 from the symbol set consisting of the uppercase letters is described and the
cardinality of this password set is calculated as an example.

The next step is to consider real world operating systems which allow password strings composed

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

1251’8 abed



of a greater number of symbols including the lowercase letters, digits, and other non alpha-
numeric symbols. This produces symbols sets with cardinalities of 52, 62, and 92.

In existing operating systems, password strings can be a range of lengths from some minimum (5)
to some maximum (8 or more) and the symbol set has roughly 96 usable characters.! This fact
naturally leads to a review of the formula for determining the sum of a geometric progression in
order to determine the cardinalities of sets composed of a range of lengths.

Students are then introduced to (a review of) the concept of expected best, average and worst
case algorithm performance. Intuitively, students should now understand that the brute-force
attack will have to test about half of the possible password strings in the set before finding a
match. It is useful to challenge the students to informally prove that the brute force guessing
attack will actually succeed.

In the context of an undergraduate security course, user strategies for choosing a password string
that maximizes the amount of computation that an attacker must perform to guess the password
are then related to the cardinality of the various symbol sets. Rules for creating strong passwords
are then reviewed. These arise directly out of the analysis of the symbol set size.?

A basic analysis of the feasibility of generating all the password strings for some of the larger
password string sets is now presented to the students in an informal way. After showing that this
is not feasible, the heuristic dictionary attack and the related hybrid-dictionary attack is presented
to the students as a better algorithmic approach to guessing a password. [Stallings 1998] [Skoudis
2002]

Finally, a description of how cracking programs and attacks are actually conducted is explained.
Many students initially assume that the attack will be done at the login prompt when it is most
often conducted on a stolen copy of the system password file. [Skoudis 2002]

The Assignment:

In order to solidify student understanding of the concepts presented in lecture, students are given
a programming assignment in which they are to develop a crude simulation of a brute-force
password guessing attack by generating the entire set of password strings for some of the smaller
symbol sets, recording the required times to do so, and then after calculating the average time
required to generate a single password string extrapolating to estimate the time required to
generate the larger sets. Results of the calculations are submitted electronically in a report in the
form of an MS Excel spreadsheet along with the source code for the program. In order to do this,

! Recently, Microsoft Corporation described the use of 2-octet Unicode characters for system passwords. Here there
are 65535 possible symbols for each character in the password! This was in the context of the annual OpenHack
competition sponsored by E-week magazine. See http://www.eweek.com/category2/1,3960,600431,00.asp for
details.

2 Strong passwords should be at least 8 characters in length and contain each of the following: 1) Mix of upper and
lowercase letters, 2) digits, 3) punctuation symbols. [Skoudis 2002]

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

2251’8 abed



students must understand the mathematics of the combinatorics presented in the lecture and have
basic programming skills.

An iterative programming approach relying on nested fixed-loop control structures is sketched
out in lecture as one solution to the problem and a recursive solution is also discussed.

For the assignment, students are not required to store the generated password strings, and merely
display them in sequence to the console as they are generated using standard output functions.
Students are permitted to use any programming language they wish. Some discussion about the
validity of this approach as a crude simulation is presented as well as a general discussion about
the validity of comparing the derived results from the use of different languages, (compilation vs.
interpretation for instance), methods, and platforms.

Results:

The assignment proved very successful in giving students an appreciation for computational
complexity. Some were intrigued enough by the discussion of the validity of comparing the
results of different languages that they actually implemented additional solutions using different
languages and compared the results of the various solutions. Other students submitted results
from running the same solution on machines with different hardware capabilities and platforms.

One variation to this assignment might be to have the students work in teams to produce several
such solutions, each using a different programming language and/or compiler and comparing the
results in a more rigorous way.

Conclusions:

The assignment described above proved most successful for giving students a solid grasp of a less

tangible, abstract mathematical concept.

References:

Skoudis, Ed Counter Hack: a Step by Step Guide to Computer Attacks and Effective Defenses,
2002 Prentice Hall

Skoudis, Ed The Hack-Counter Hack Training Course, 2002 Prentice Hall

Stallings, William Cryptography and Network Security Principles and Practice 2™ Ed., 1998
Prentice Hall

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

£'2S'8 abed



