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Abstract 
Our lungs are membrane system that allows the exchange of O2, CO2, and H2O between the 

body and the air.  When air is inhaled, oxygen is transported to the blood by diffusion through 
the alveolar membrane of the lungs.  Carbon dioxide, a waste product produced by cells, is 
simultaneously removed from the blood by diffusion through this membrane to the air in the 
lungs, and is then exhaled.  During breathing, the air in the lungs becomes saturated with water, 
and water is therefore removed from the body through respiration.   Breathing also plays a role in 
heat transfer and thermal regulation, since heat transferred to the air in the lungs is removed 
during exhalation.  We have developed a hands-on experiment to introduce freshman 
engineering students to chemical engineering principles through the exploration of the breathing 
process.  The objectives of this module are (1) to analyze the lungs as a mass transfer device, (2) 
to use gas analysis to investigate the rate of O2 consumption and CO2 production, (3) to perform 
simple mass and energy balances on the lungs, (4) to prepare a simple process flow diagram, and 
(5) use a process simulator to perform mass and energy balances. 

 

Introduction 
Rowan’s two-semester Freshman Clinic sequence introduces all freshmen engineering 

students to engineering in a hands-on, active learning environment.  Engineering measurements 
and reverse engineering methods are common threads that tie together the different engineering 
disciplines.  Previous reverse engineering projects have involved common household products 
such as automatic coffee makers [1,2,3] hair dryers and electric toothbrushes [4].  Recently, the 
human body was added to the repetoire of familiar machines to be reverse engineered.  In a 
semester-long project, freshmen engineering students explore the interacting systems of the 
human body in a hands-on, active learning environment.  They discover the function, interaction, 
and response to changing demands of various systems in the human body:  the respiratory, 
metabolic, cardiovascular, electrical, and musculoskeletal systems. This paper describes a 
laboratory experiment in which students are introduced to engineering measurements and 
calculations, estimations and unit conversions through their application to the respiratory system.   

Students measure physiologic variables such as breathing rate, and respiratory gas compositions 
at rest and during moderate exercise on an exercise bicycle ergometer.  Using their data, students 
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perform mass balances to determine the rates of oxygen consumption and carbon dioxide 
production.  This enables them to estimate the rate of energy expenditure, and determine the 
mechanical efficiency of the human body.  They apply energy balances to determine the rate of 
heat transfer through respiration, and compare this to the total resting energy expenditure.  
Finally, students create a process flow diagram using HYSYS [5] process simulator, and perform 
mass and energy balance calculations on the lungs. 

The objectives of this module are (1) to analyze the lungs as a mass transfer device, (2) to use 
gas analysis to investigate the rate of O2 consumption and CO2 production, (3) to perform simple 
mass and energy balances on the lungs, (4) to prepare a simple process flow diagram, and (5) use 
a process simulator to perform mass and energy balances. 

 

Background 
The air we inspire (inhale) is approximately 21% O2 and 79% N2 on a dry basis, while the 

expired (exhaled) gas from the lungs contains approximately 75% N2, 16% O2 and 4% CO2 and 
5% H2O [6,7].  The inspired air is at ambient pressure, temperature and humidity, while the 
expired air is saturated at body temperature and ambient pressure.  The lungs serve as a mass 
transfer device that allows rapid and efficient exchange of O2, CO2, and H2O.  The key to 
efficient gas exchange in the lungs is the tremendous surface area provided by the alveoli, the 
300 million tiny sacs representing the terminal ends of the branched air-flow passages.  The 
volume of the lungs is about the size of a basketball, but their surface area is about 80 m2!  
Oxygen and carbon dioxide are moved in and out of the lungs, through the respiratory airways, 
by a process known as ventilation.  Oxygen and carbon dioxide are exchanged between the 
alveoli and the blood in the pulmonary capillaries by diffusion [8].   

A material balance on the lungs relates the oxygen consumption rate (
2OVD , L O2/min) to the total 

air flow rate (VD , L/min), and molar oxygen compositions of the inspired and expired air ( in
Oy

2
 

and out
Oy

2
): 
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O
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An analogous component balance can be written for carbon dioxide, nitrogen and water.  
Nitrogen is known to be inert, so that the net rate of transfer with the body is zero.  The gas 
exchange data ( outV� , out

Oy
2

, out
COy

2
) are reported at BTPS (Body Temperature and Pressure, 

Saturated) conditions.  Since the ambient temperature and humidity conditions are different, the 
material balances involve Ideal Gas Law and relative humidity calculations. 

Oxygen consumed during respiration is transported by blood to the body, where it is used by 
cells to produce energy through the oxidation of carbohydrates and fats from food.  The reaction 
stoichiometry and thermodynamics are well known, and the rate of energy production may be 
calculated from the rate of O2 consumption [6].  For instance, energy is released in the oxidation 
of glucose (evaluated at STP [9]): 

C6H12O6 + 6O2 → 6H2O + 6CO2 + 673 kcal  P
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The heat of reaction for a mixed diet is equivalent to approximately 4.862 kcal per liter of 
oxygen consumed.  This energy is used to maintain the function of the body (basal metabolism) 
and to do external work (exercise).  The rate of energy expenditure (EE) is related to the rate of 
O2 consumption (

2OVD ) and heat of reaction: 

 
2O L

kcal862.4EE
2
×= OVD  (2) 

The First Law of Thermodynamics reveals that if the energy equivalent of consumed food 
exceeds the energy expended, the result is a net storage of energy in the form of fat.  The human 
body doing exercise can be analyzed as a machine doing mechanical work.  To do mechanical 
work such as bicycling or running, the body consumes energy supplied by oxidation of food.  
Because the body is not perfectly efficient, the energy consumed is greater than the actual 
mechanical energy expended.  The efficiency, η, of this human machine or a human is expressed 
by the following equation: 

 100
consumedenergy 

done work mechanical ⋅=η  (3) 

Respiration also contributes significantly to the thermal regulation system of the body.  Inspired 
air is warmed from ambient temperature to body temperature prior to being exhaled.  In addition, 
water evaporates from the wet alveolar membranes to saturate the air in the lungs prior to 
expiration.  The humid exhaled air removes heat from the body in the form of latent heat of 
vaporization.  The rate of cooling (q, kcal/min) achieved through the process of respiration is: 

 ( ) ( )in
w

out
wwvap

inout
airpair mmHTTCmq ��� −∆+−= ,  (4) 

In Equation 5, m  is the molar flowrate (mol/min), Cp is the molar heat capacity (kcal/mol K), T 
is temperature (K) and vapH∆  is the latent heat of vaporization of water (kcal/mol).  Subscripts 
represent components air air or water, and superscripts represent inlet or outlet air.  Under 
normal conditions, about 14% of the body’s total cooling is accomplished through respiration, 
and this percentage increases during exercise [10]. 

Equipment 
The equipment used for all cardiorespiratory measurements was a gas exchange system, 

coupled with a cycle ergometer.  The MedGraphics CPX/D cardiorespiratory gas exchange 
system includes capability for direct oxygen and carbon dioxide measurement and ventilation 
(flow).  The system interfaces with a cycle ergometer (Lode Corvial) for exercise testing.  To 
prevent cross contamination between patients (students), disposable PreVentTM pneumotachs 
were used once and then discarded.  This system was purchased from MedGraphics, St. Paul, 
MN for approximately $35,000.  While this price may be prohibitively expensive for an 
engineering program to purchase if not used for research purposes, many universities have such 
equipment available in a physiology or exercise science laboratory.   

Experiment 
Prior to commencing the experiment, the MedGraphics CPX/D system pneumotach is 

calibrated for air flow rate using a calibration syringe.  Gas calibrations for oxygen and carbon 
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dioxide are performed using a reference gas (21% oxygen, balance 
nitrogen) and a calibration gas (12% oxygen, 5% carbon dioxide).  In 
addition, the barometric pressure and ambient relative humidity are 
entered manually, and these values are stored by the software. 

One student per team of four students is selected as the test subject 
for the experiment.  Using the MedGraphics CPX/D cardiorespiratory 
test system coupled with the Corvial Cycle ergometer, measurements 
are taken at rest (for four minutes) and during exercise (for four 
minutes, pedaling at 70-80 rpm at 30 W braking power).  A student is 
shown performing the experiment in Figure 1. 

The following quantities are measured directly and displayed using 
Med Graphics Breeze Suite software:  outV� , in

Oy
2
, out

Oy
2

, in
COy

2
, out

COy
2
, and 

breaking power.  The gas exchange data are reported at BTPS (Body 
Temperature and Pressure, Saturated) conditions.  The software offers 
many options for the convenient display of automatically-calculated 
values; however, these direct measurements at BTPS conditions are 
the only values necessary to perform the calculations involved in this experiment.  The 
calculation/display options may be exercised in order to provide numbers against which students 
may check their calculations. 

For their laboratory report, students perform all calculations by hand.  In a subsequent laboratory 
period, students are introduced to the process simulator, HYSYS.  In an in-class activity, students 
use HYSYS to draw a simple process flow diagram of the respiration cycle.  They provide their 
data and allow HYSYS to perform material and energy balances on the respiration process, and 
they compare the results of the simulation to their hand calculations.   

Results 
Gas exchange measurements were taken at rest and during exercise as described above.  

Nearly everyone is aware of the body’s physiologic responses to exercise:  The body’s increased 
demand for energy is met with an increased breathing rate and heart rate.  By comparing the 
resting and exercise gas exchange measurements, students quantify this physiologic response.  
Table 1 shows gas exchange measurements and calculated values for the respiration experiment, 
for an 18 year female student (120 lb, 64 in).  Comparison of exercise data to resting data reveals 
that the rate breathing rate is substantially faster during exercise, the oxygen concentration of 
expired air is slightly lower than its resting value.  This translates into higher rates of oxygen 
consumption and carbon dioxide production during exercise.  The energy expenditure as 
calculated by Equation 2 is higher during exercise, as expected by our knowledge that exercise 
“burns calories”.  The mechanical efficiency of cycling is only 23.4%, because a significant 
amount of energy is required to overcome internal and external friction [6]. 

There are three sources of variance in their measurements that are examined by students in the 
experiment:  (1) accuracy and reproducibility of the equipment used for experimental 
measurement; (2) breath-by-breath variation on a single subject; and (3) person-to-person 
physiologic variations.  The first is illustrated by taking five consecutive measurements of the P
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ambient air composition and determining the average and standard deviation.  The second is 
explored by observing ten consecutive breath-by-breath analysis of flow rate and gas  
compositions for a single subject.  The third is explored by examining software-predicted results 
and experimental results between different students. Factors such as gender, height and weight 
are considered.  These are explored in more depth in a follow-up experiment in which students 
use correlations to predict results for body surface area and energy expenditure. 

Table 1.  Gas exchange measurements and calculations at rest and during cycling exercise. :  outVD , in
Oy

2
, 

. out
Oy

2
, in

COy
2

, and out
COy

2
 are measured experimentally at BTPS conditions. 

2OVD and 
2COVD are calculated at STP. 

(Ambient Conditions:  T=21°C, P=755 mm Hg, RH=50%) 

Measured variables Calculated Variables 

Power 
(W) 

outV�  
(L/min) 

out
Oy

2
 out

Oy
2

 2OVD  
(L/min) 

2COVD  
(L/min) 

EE 
(kcal/min) 

ηηηη 
(%) 

0  7.99 0.174 0.035 0.25 0.23 1.23 -- 

30  20.50 0.171 0.035 0.63 0.54 3.07  23.4 

        

Using HYSYS process simulator, the experimental 
gas exchange resting measurement data are used to 
simulate the process of respiration.  The feed stream 
represents inspired air at ambient temperature, 
pressure and relative humidity.  In the first unit, the 
air is heated to body temperature, and in the second 
unit it is humidified to saturation.  The HYSYS 
respiration process flow diagram is shown in Figure 
1.  Material and energy balance calculations are 
performed and compared with hand-calculated 
values.  The overall rate of heat transfer through 
respiration at rest (and at ambient conditions of the 
experiment) is about 10.3 kcal/h, or 14% of the total 
resting energy expenditure.  

 

Conclusions 

This paper describes a simple and exciting laboratory experiment in which a wide range of 
chemical engineering principles are introduced through application to the process of respiration.  
Students take measurements of physiologic variables both at rest and during exercise, and then 
perform calculations involving mass and energy balances, chemical reaction stoichiometry and 
heats of reaction, work and efficiency.  Through these calculations, students apply the Ideal Gas 
Law and partial pressure, relative humidity, and Henry’s law relationships.  Students are also 

Figure 1.  The HYSYS Respiration process 
flow diagram. 
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introduced to chemical process simulation software when they simulate the process of respiration 
using HYSYS.   

Basic physiologic responses are already familiar to students through “common knowledge” and 
sensory experiences, and most students have a natural curiosity to learn how their own bodies 
work.  In a series of hands-on experiments that use engineering measurements and reverse 
engineering methods, these physiologic responses are quantified.  This establishes a framework 
within which new engineering concepts are introduced through the analysis of the data.  Using a 
familiar system, sensory experiences, and hands-on active learning is thought to increase 
understanding and retention of the new concepts. 
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