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Dynamic 3D Visualization of Stress Tensors 
 

Abstract 

 

Sophomore and junior engineering students in majors such as mechanical, aerospace, civil, and 

materials engineering learn about the concept of the “state-of-stress” at a point within an object.  

Many engineering students have some difficulty in thoroughly grasping this concept, especially 

the more mathematical and visual aspects.  To date, the best method we have for visualizing the 

state-of-stress has been to use Mohr’s circle(s), named after the famous 19
th

 century German 

civil engineer, Christian Otto Mohr.  Mohr’s circle applies to the case where rotations of a 

differential cube about a principal direction (only) are considered.  While the discovery of 

Mohr’s circle was a brilliant accomplishment, it is somewhat non-intuitive to many students and 

it can take quite a bit of practice until the student has mastered the technique.  Even when the 

student finally does grasp the concept, they may not necessarily have a complete picture of the 

state-of-stress at a point because Mohr’s circle only applies to rotations of a differential cube 

about a principal direction.  In that sense it is a 2D method.  Of course, in general one would be 

interested in viewing the stresses associated with all possible 3D orientations of the differential 

cube.  In addition, while in recent years several education researchers have developed custom 

software to permit dynamic visualization of the state-of-stress as the differential cube rotates, 

visualization is typically static.  What is needed is a true 3D dynamic visualization tool that 

permits one to visualize an arbitrary state-of-stress from the perspective of continuously varying 

and arbitrary 3D differential cube orientations, parameterized by a time varying rotation matrix, 

such as that driven by an Euler matrix with 3 time varying angles. 

 

The objective of this educational research project is to:  (1) develop the mathematics that permit 

one to arbitrarily change the orientation of a differential cube and determine the stresses in the 

new coordinate system (i.e. 3D tensor change of bases), (2) create a corresponding computer-

aided-engineering (CAE) software tool using primarily MATLAB
®

 and SolidWorks
®

, (3) 

generate useful simulations using MATLAB
®

 and corresponding animations using SolidWorks
®

, 

and (4) attempt to determine their educational value with “mechanics” students.  The animations 

in particular can be used within the engineering curriculum, specifically within the Mechanics of 

Materials and Machine Design & Synthesis courses where the 3D state-of-stress at a point is 

very important for understanding advanced mechanics concepts and failure theories which are 

inherently 3D in nature.  In summary, this paper presents intriguing and very useful results that 

others, such as mechanics engineering faculty and students should find useful in enhancing their 

understanding of stress tensors.  This has certainly been our classroom experience. 

 

1. Introduction 

 

Christian Otto Mohr (1835-1918), born in Germany in the coastal area by the North Sea, began 

his career as a civil engineer employed by the German railroad industry.  During these years, 

Mohr began developing his theories of stress and strength of materials.  At the age of 32, Mohr 

left the railroad industry and became a full-time theoretical engineer and a professor of 

mechanics.  Eventually, after much investigation, Dr. Mohr developed a method for describing 

the state-of-stress at a point, his “Circles of Stress,” which now bear his name
1-3

.  “Mohr’s 

circles” have been used extensively in modern engineering, playing significant roles in 
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mechanical, aerospace, civil, and materials engineering fields and commonly appear today in 

undergraduate mechanics textbooks, e.g. Beer, et al.
4
 and Shigley, et al.

5
 

 

Since Mohr’s seminal work, over the years several researchers and educators have made strides 

to extend it, either for purposes of visualizing entire 2D or 3D fields (such as for stress) or for 

further enhancing the understanding of the state-of-stress at a single point through visualization.  

Regarding fields, Jermic, et al.
6
 present three different approaches to visualizing tensors (such as 

for stress) in 3D space (hedgehogs, hyperstations, and hyperstream surfaces), primarily for use in 

geomechanics applications.  In another geomechanics application pertaining to oil wells, Zhou, 

et al.
7
 developed an efficient method to visualize symmetric second order tensors along 3D 

curves.  Volume deformation forms the basis of another 3D field visualization technique, as 

presented in Zheng and Pang
8
.  Visualization of the 2D state-of-stress at a point has been studied 

by several researchers.  Almusallam and El-Din Taher
9
 present a brief history of the evolution of 

Mohr’s work in the 20
th

 century in addition to extending the original technique to provide access 

to the shearing stress components.  Ressler
10

 developed an educational based animation program 

for use in understanding Mohr’s circle referred to as the Visual Stress Transformer.  Taking it a 

step further, Moller and Mokaddem
11,12

 have developed a “learning tool in the form of a system 

that gives real-time display of the stress state and its corresponding Mohr’s circle at a point in a 

structure that the student manually loads.” 

 

The research objectives are to: 

1. Develop the applied mathematics used to transform the state-of-stress at a point in a truly 3D 

sense (i.e. tensor change of bases). 

2. Using modern software (i.e. MATLAB
®

 and SolidWorks
®

 specifically), develop a computer-

aided-engineering (CAE) tool, and 3D graphical visualization that facilitates the 3D visual 

transformation of the state-of-stress at a point. 

3. Using the above CAE tool, develop several specific animations (and an associated DVD) 

corresponding to the 3D state-of-stress at a point whereby the differential cube “tumbles” in a 

3D sense. 

4. Test the reaction of undergraduate mechanical engineering students first exposed to Mohr’s 

circle(s) to several of these animations to attempt to determine their educational value. 

 

The paper first presents the applied mathematics associated with the 3D transformation of the 

state-of-stress at a point.  This is followed by the development of a CAE model using primarily 

MATLAB
®

 and SolidWorks
®

, simulation and animation studies, student feedback, and 

conclusions. 

 

2. 3D Transformation of the State-of-Stress at a Point 

 

To begin, we note that the state-of-stress at a 3D point can be represented as a symmetric rank 2 

tensor  with 2 directions and 1 magnitude and is given by
4,13

: 

              kkjkikkjjjijkijiii zzzyzxyzyyyxxzxyxx uuuuuuuuu --------?  (1) 

where a standard stationary xyz coordinate frame with associated unit vectors i , j , and k  are 

utilized.  ),(),(),(),(),( zyyzyzyyyzxxzxzyxxyxyxxx uvuuuuvuuvuuu ?»»?»?»» and P
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)( zzz uu »  represent the 6 scalar stress components.  Fig. 1 provides example visual 

interpretations of several stress components; others follow similarly. 

 

kixzu

jjyyuikzxu

 
 

Fig. 1  Differential cube centered about point of interest with several stress components 

depicted.  For example, kixzu  is to be interpreted as a stress on the i-  face, in the 

k- direction, with magnitude xzu . 

 

Next, we would like to be able to change the coordinate system used in an arbitrary manner and 

represent the state-of-stress in the new coordinate frame.  To facilitate this, a 33·  Euler rotation 

matrix ( R ) commonly used in robotics with 3 sequential angular inputs ),(),( tt sh  and )(t{  is 

utilized and given by
14
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which can be applied to transforming geometric data in the xyz coordinate frame into the moving 

''' zyx  coordinate frame as:  TT zyxRzyx ]'''[][ ? , or TTT zyxRzyx ][]'''[ ? .  

The stress tensor '  in the new coordinate frame is given by:         

                          ------? ''''''''''''' '''''''''''' kjjjijkijiii zyyyxyzxyxxx uuuuuu   

          '''''' '''''' kkjkik zzyzxz uuu --   (3) 

Recognizing the relationship between unit vectors in the ''' zyx  frame and the xyz frame yields: 

                 kjikkjijkjii 332313322212312111 ';';' RRRRRRRRR --?--?--?  (4) 

Finally, substitution of Eqn. (4) into Eqn. (3), setting '? , and performing the necessary 

tensor algebra (e.g. expanding ))(('' 312111312111 kjikjiii RRRRRR ----? , etc.) yields a 

relationship between the 6 components of stress in the xyz coordinate frame and the 6 

components of stress in the ''' zyx  frame: 

       T
zyzxyxzzyyxx

T
yzxzxyzzyyxx T ][][ '''''''''''' uuuuuuuuuuuu ?  (5) 

where ),,(66 {sh·» TT , the stress transformation matrix is given by: 
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Through inversion of T  (or other more efficient means) the stress components in the ''' zyx  can 

be determined.  With time varying Euler angle inputs ),(),( tt sh and ),(t{  time varying stress data 

can be generated.  The above result (i.e. Eqns. (5) and (6)) also applies to other rank 2 tensors 

such as for strain, inertia, and curvature. 

 

3. Computer-Aided-Engineering (CAE) Tool 

 

Given the ability to transform the state-of-stress at a point in a time-varying cube orientation 

sense, this can form the basis for animations that depict a cube whose orientation is changing 

with the proper stress components being displayed.  Software tools utilized are MATLAB
®15

, 

Excel
®16

, and SolidWorks
®17-19

 and the details are described in Hacker
20,21

.  MATLAB
®

 was 

used to create arrays of time-varying stress data, given a state-of-stress in the fixed, or xyz 

coordinate frame.  A function file, “DiffCube” was created for this express purpose.  Next, 

Excel
®

 was used to further process and format the MATLAB
®

 data for use with SolidWorks
®

.  

Specifically, “design tables,” with time dependent configurations (typically numbering in the 

hundreds) were created that subsequently form the basis for animations within SolidWorks
®

 

using the “add-on” Animator
®

, in conjunction with a SolidWorks
®

 assembly model of a 

differential cube with parametrically varying (within limits) stress arrow “parts.” 

 

4. Simulation and Animation Studies 

 

Using the CAE tool discussed above, a variety of simulations and corresponding animations 

were generated for purposes of exercising the equations and the software (for validation 

purposes) and to create simulations and animations of educational value.  Three major cases 

considered include the following: 

‚ Rotation about a principal axis 

‚ Rotation about a non-principal axis 

‚ Arbitrary “tumbling” with no fixed axis of rotation 

The DVD mentioned above
21

 presents animations corresponding to all of these cases. 

 

Rotation About a Principal Axis 

 

This is the standard case that a number of researchers and educators (as mentioned above) have 

developed and studied already, including Mohr himself, over one-hundred years ago.  We also 
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performed simulation and animation studies for this case for verification.  This effort was 

successful and included verifying that the Von Mises stress is invariant with respect to 

orientation changes of the differential cube
1
.  However, due to space limitations and the desire to 

focus on more interesting general cases, no results will be presented. 

 

Rotation About a Non-Principal Axis 

 

Recall that rotation of the differential cube about a principal axis corresponds to a circular arc on 

a “ uv / ” plot (i.e. shearing stress vs. normal stress), i.e. Mohr’s circle.  Suppose however, that 

the axis of rotation is not about a principal axis, what happens then?  Excluding non-degenerative 

cases such as when 2 or more principal stresses are equal, the locus of points on a uv /  plot will 

lie within the “tri-circular” region, i.e. between the 3 Mohr’s circles whose associated principal 

stresses are determined by the eigenvalues of the matrix components of .  Fig. 2 presents 

simulation and partial animation results for such a case.  Observe that the )()( tt uv /  trajectories 

for all +cube face normal directions (i.e. )(),( tytx -- , and )(tz- 2
) lie within the tri-circular 

region as alluded to above and fairly irregular continuous curves result.  Note:  since orientation 

changes do not occur about a principal axis, the notion of an algebraic sign associated with the 

shearing stress vector on the normal face ( ) does not have applicability.  In view of this we 

have simply elected to plot 
2

‒  vs. u  so that the plots appear symmetric about the u  axis.  

Mase and Mase
22

 present similar numerical results in that the coordinates of a single point within 

the tri-circular region (with 0‡v ) are determined.  The 7-shot sequence of cube orientations 

with stresses shown (blue – normal stresses, red – shearing stresses) illustrates how the stresses 

change over time as the differential cube’s orientation changes.  Lastly, to be able to generate the 

proper Euler angle time trajectories a special utility was created within SolidWorks
®

 for this 

purpose – see Hacker
21

 for details. 

 

Arbitrary “Tumbling” with no Fixed Axis of Rotation 

 

To more fully exercise the machinery developed, we consider the totally arbitrary case where the 

differential cube’s orientation changes in a fairly arbitrary manner.  Fig. 3 depicts an example of 

such a scenario.  In particular, notice how the tri-circular regions are fairly well covered by the 

),(),( tytx  and )(tz  axis )()(
2

tt u/‒  trajectories, certainly a qualitative check on the 

correctness of the results.  Similarly to the previous simulation and animation run discussed 

above, the 7-shot sequence of cube orientations illustrates how the stresses change as the cube 

orientation changes. 

 

The above simulation and animation runs are of an academic nature.  What about incorporating 

an entertainment component?  The current “video-game generation” of engineering students just 

might appreciate something along the lines of a “Mohr’s video-game.”  Fig. 4 depicts a 

                                                 
1 Recall that the Von Mises stress 'u  is given 

by 2/)](6)()()[(' 2/1222222
yzxzxyzyzxyx vvvuuuuuuu ---/-/-/? . 

2 Note:  to simplify the notation and minimize the labeling area, the instantaneous ''' zyx  axes will be labeled  

)(),( tytx , and )(tz , or simply +X, +Y, and +Z. 
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SolidWorks
®

 model of a differential cube with stresses shown on the outer faces of the 

differential cube with a medieval motif.  If desired, the above “academic animations” can also be 

played in this venue as well. 

 

5. Student Feedback 

 

This past fall semester (2005) students in the Machine Design and Synthesis (ENGR 320) course 

were exposed to the Stress Visualization DVD after covering Mohr’s 3 circles in detail
23,24

.  The 

students viewed the pre-programmed animations on the DVD in their entirety (for about 20 

minutes) and the following basic question was posed as part of the written end-of-course 

evaluation:  “Did the Stress Visualization DVD played in class enhance your understanding of 

the concept of the state-of-stress at a point?”  Of the 20 students that responded, 19 responded 

favorably and 1 did not.  A typical favorable comment was “I liked how it showed the gradual 

change of the stresses.”  The one student who did not respond favorably noted: “No, I have fairly 

good visualization skills.  It backed up what I already understood.”  In summary, students 

generally indicated that the DVD enhanced their understanding of the concept of the state-of-

stress at a point and the lead author will continue to use this DVD as a teaching aid when 

teaching this course.  

 

6. Conclusions 

 

A CAE-based simulation / animation tool has been developed for permitting the dynamic 3D 

visualization of the state-of-stress at a point using an arbitrary time varying coordinate frame 

attached to the differential cube.  It was made possible through a change of tensor bases, 

numerically computing software (i.e. MATLAB
®

), data processing software (i.e. Excel
®

), and 

3D visualization software (i.e. SolidWorks
®

).  Several interesting simulation / visualization runs  

were made and presented, one corresponding to rotation of the differential cube about a non-

principal axis, and another corresponding to an arbitrary tumbling of the cube.  A DVD of a 

collection of numerous animations was created and used effectively as a teaching aid when 

teaching junior mechanical engineering students in a course emphasizing mechanics concepts.  

In summary, engineering students in majors such as mechanical, aerospace, civil, and materials 

engineering and mechanics faculty should find this work useful. 
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Mohr’s Circle Diagram: X face = Blue, Y face =  Red, Z face = Green 

 

Fig. 2  Simulation and partial animation run for the case of rotation of the differential cube 

about a non-principal axis (Von Mises stress 'u  = 8.5). 
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Mohr’s Circle Diagram: X face = Blue, Y face = Red, Z face = Green 

 

Fig. 3  Simulation and partial animation run for the case of arbitrarily tumbling of the 

differential cube (Von Mises stress 'u = 10.6). 
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Fig. 4  Differential cube and the state-of-stress at a point depicted in a medieval motif. 
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