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Abstract  
 
This paper studies the two-dimensional wavelet transform applied to two-dimensional images.  The 
classical technique oftentimes implements the Fourier transform.  This paper offers a brief 
discussion regarding the comparison of the two transforms on a single alphabet, N.  It provides a 
comparison of the global properties present in the Fourier transform technique verses a more 
localized analysis when the wavelet transform is applied to the same image.  The wavelet selected in 
this study is the derivative of the Gaussian since in some sense offers a nice comparison to the 
Fourier method. 
 
I. Introduction 
 
The applications of wavelet and wavelet transforms to discrete data are so plentiful that they have 
emerged as the most promising techniques in the past decade.  For example the current research by 
the Federal Bureau of Investigation (FBI) in establishing an appropriate wavelet transform to be 
applied to its 30 million criminal fingerprints now stored in filing cabinets illustrates the application 
importance.  The advantage will be to compress the data and accelerate the matching techniques.  
These topics are discussed in Strange44. 
 
Our present implementation of the wavelet transform will be to apply it to a two dimensional image 
and to be able to extract critical and pertinent information.  The literature on wavelet transforms in 
the one-dimensional case is very extensive.  This is due in part to the fact that a signal captured from 
a piece of hardware can in many situations be obtained in a one-dimensional fashion.  Images by 
their very nature require two or three dimensions and the literature is somewhat less available.  
However some research has been conducted in the multivariable cane and can be found in references 

9,14,26,42.  We will use these developments extensively in our investigations whereby the transform 
will be implemented on an alphabet and its reflection in the following sequel.  The overall 
procedures will entail a detailed analysis of a two-dimensional “mother” wavelet implemented 
within a wavelet transform on the alphabet, N, together with a comparison to a Fourier transform.  
All graphics presented in this paper have been conducted on a MATLAB platform.  A preliminary 
mathematical review is provided to reacquaint the reader with the mathematical analysis of wavelet 
theory in both the one and two-dimensional case. 
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II. Two-dimensional Windowed Fourier Transforms. 
 
Let f(x,y) be a function whose domain is the spatial location within an image located at coordinates, 
(x,y), and whose range gives the gray level intensity at the location, (x,y) where 0 corresponds to 
black and 255 corresponds to white.  If we are interested in the frequency content of the gray levels, 
then the traditional method would be to apply the two-dimensional Fourier transform, 
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and then plot the frequency content, ),(ˆ vuf . 

 
Since a two dimensional image is contained on a bounded region, [ ] [ ] 2,, Rdcba ⊂× , the improper 
integral, (2.1), gives way to a finite bounded integral.  As an example we consider the unit box 
illustrated in Figure 1 and plot its frequency content in Figure 2.  We also illustrate the phase of the 
unit box in Figure 3.  Traditionally, data of the form, f(x,y) can be transformed by a windowed 
Fourier transform, 

 

( )( )
π2
1,:,,ˆ

11 =yxvugwindowf dxdyyyxxgyxf e vyuxj ),(),( 11
)(2 −−∫ ∫

∞

∞−

∞

∞−

+− π , 

 
implementing an appropriate window function, g(x,y).  To facilitate the calculations, oftentimes, u, 
v, x1,y1, are assigned regularly special values, x1=nx0, y1=my0, u=lu0 and v=pv0 where m,n,l and p 
range over the integers.  The wavelet transform implementing a “mother” wavelet in some sense 
replaces the window function, g(x,y). A window function is illustrated in Figure 4 to show the 
procedure with the Fourier spectrum. 
 
    Figure 1.  Contact author-file too large 
    Figure 2.  Contact author-file too large 
    Figure 3.  Contact author-file too large 
    Figure 4.  Contact author-file too large 
 
III. Two Dimensional Wavelets. 
 
We will not include a presentation regarding multiresolution analysis leading to a scaling function 
and then to a “mother” wavelet.  The references9,10,14,31,42 are but a few resources for this remarkable 
analysis. 
 
We begin with a two-dimensional mother wavelet, w(x,y), having dilation and translation 
parameters, (a1,a2) and (b1,b2) respectively each varying over R2.  The dilated and translated 
“mother” wavelet the becomes 
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where 00 21 ≠≠ andaa .  The Fourier transform of this wavelet then becomes 
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Furthermore Parseval’s formula in R2 becomes 
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Definition 3.1.  The two-dimensional wavelet transform on f(x,y) is then defined by the formula, 
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The resolution of the identity an important inversion tool for the wavelet transform is given by the 
following theorem. 
 
Theorem 3.2.  For all f,g ( )22 RL∈  there holds 
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Proof.  See references13,14. 
 
The Cϖ in Theorem 3.2 equals 
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leading to the inversion formula, 
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Expression (3.4) requires the “mother” wavelet to satisfy the necessary condition, 
 

∫∫ = .0),( dxdyyxω  
 
IV.  Wavelets in Image Processing. 
 
A major reference for this section is the paper by S. Mallat and S. Zhong28.  A smoothing function, 

)(),( 22 RLyxs ∈ , having unit length is selected and whose partial derivatives become a “mother” 
wavelet.  The smoothing function, s(x,y) has the following property proven in proposition 4.1. 
 
Proposition 4.1 If function, )(),( 22 RLyxs ∈ , where 1),( =yxs  then all functions 
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also have unit length for all j,k belonging to the integers, Ν . 
 
Proof.  We compute the norm of ),(, yxs kj , 
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Changing variables by kxs j −= 21  and kys j −= 22  immediately gives us the result, 
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In many applications for image processing the smoothing function selected is the Gaussian function 
and it is illustrated in Figure 5. 
 
We then define the two functions which become the “mother” wavelets in our image processing 
technique given by the partial derivatives, 
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The dilation factors, 2j, where j Ν∈ are then selected and the wavelet transform for f(x,y) becomes 
 

P
age 8.460.5



 

“Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 
© 2003, American Society for Engineering Education” 

βαβαωβαωω ddyxfyxfyxf jjjjj )
2

,
2

(
2
1),(),(),( 1
2

1
2

1
2

−−
=∗= ∫∫  

and 
 
      

 βαβαωβαωω ddyxfyxfyxf jjjjj )
2

,
2

(
2
1),(),(),( 2
2

2
2

2
2

−−
=∗= ∫∫ . 

 
We recall the following mathematical result for convolution. 
 
Theorem 4.3  ( ) DgfgDfgfD ∗=∗=∗ )  where D  is a differential operator and f,g are suitably 
differentiable functions. 
 
Proof:  See any mathematical reference including convolution properties for differentiable functions. 
 
This result gives a fundamental result in image processing namely that the gradient of f(x,y) 
smoothed by s(x,y) is proportional to the wavelet transform of f(x,y) in the following sense: 
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where the gradient operator in the last equation is written in column form.  For image processing the 
two-dimensional wavelet transform of f(x,y) is the set of functions, 
 
 [ ]),(),,( 2

2
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2 yxfWyxfWWf jj=  and j belongs to N. 
 
V.  Fourier Spectrum Vs Wavelet Transform. 
 

The analysis of comparing the Fourier spectrum to the wavelet transform is completed on the 
letter, N, which is constructed in MATHLAB and illustrated in Figure 6.  The Fourier spectrum 
of the letter, N, is then illustrated in Figure 7.  The letter, N, is changed somewhat for illustration 
purposes when one implements the wavelet transform.  It is merely changing the diagonal line in 
the letter, N.  Figures 8 and 9 illustrate the wavelet transform given by the derivatives of the 
Gaussian.  It is completed by implementing convolution as indicated in reference 42. 
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    Figure 5.  Contact author-File too large 
    Figure 6.  Contact author-File too large 
    Figure 7.  Contact author-File too large 
    Figure 8.  Contact author-File too large 
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