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Effective Teaching of Programming Concepts using  

Low Resolution (Character) Graphics 
 

Introduction 

 

For novice students of Computer Programming, the difference between Floating point numbers 

and Integers (and consequent difference between arithmetic operations on them) appears to be a 

difficult concept to grasp. In popular languages such as C++ or Java, this difficulty is made more 

acute by the fact that the same symbol is used for both floating point division and integer 

division.
1
 Without a proper grasp of the difference between these two fundamentally different 

kinds of numbers, students would also find it difficult to understand that floating point results 

should not be compared for equality. I was therefore interested in finding a way to reinforce 

these concepts soon after the students were initially exposed to them. 

 

Nested Loops and Character Graphics 

 

Drawing some simple shapes like rectangles or triangles in a text window can be an interesting 

application of nested loops and introductory programming textbooks often include such 

examples.
2
 Drawing shapes like a circle is usually not considered unless a high resolution 

graphic window is to be the output device. I felt that a programming exercise to draw a circle 

using a text window can be useful because: 

• The exercise can be considered as soon as the students are exposed to the concepts of 

nested loops, 

• Knowledge of a graphics package is not required, 

• The exercise involves significant problem solving activity. 

 

To use this exercise for reinforcing the concepts mentioned in the introduction, we would first 

consider drawing a filled circle, and then consider drawing a circle in outline. The failure of the 

program to work in the second case provides the basis for a classroom discussion on the 

differences between floating point and integer arithmetic.  

 

Problem Solution 

 

We consider the output device (a printer using a fixed pitch font or a text window) to be capable 

of displaying a certain number of rows of characters. For example, a standard text window may 

have 25 rows of 80 characters each. The top left position of this grid has coordinate (1, 1). In this 

case, (40, 13) is the coordinate of the center of the screen (not using the column position 80). The 

(column, row) positions are translated to (x, y) coordinates relative to the center of the output 

window using characters per inch (CPI) and lines per inch (LPI) values for the particular output 

device. To draw a filled circle, all character positions satisfying x
2 
+ y

2
 < r

2
 display a non-blank 

character whereas the rest display the space character. The essential nested loop is given in the 

following figure. Note that most of the named constant values are determined by the output 

device characteristics. The only input provided is the radius of the circle to be drawn (r). 
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 // nested loop to go through all character positions 

 for (int j = YLOW; j <= YHIGH; j ++) { // for each line 

  // calculate y coordinate relative to center of screen 

  y = (j - YCENTER) / LPI; 

 

  for (int i = XLOW; i <= XHIGH; i ++) {  

   // for each character position within line 

   // calculate the x coordinate relative to center of screen 

   x = (i - XCENTER) / CPI; 

 

   if (x * x + y * y < r * r)  

    cout << '*';   

   else 

    cout << ' ';     

  } // end for i 

 

  cout << endl; // end one line 

 } // end for j 

 

Results from this exercise 

 

If the LPI and CPI values are correct for the output device, then the program draws a shape that 

does look like a filled circle. The following figure shows a sample output from this exercise. 

Note that the exact values for character pitch and line spacing is essential for correct output and 

using inaccurate values result in some distortion. 

 

 

                             ********* 

                           ************* 

                         ***************** 

                        ******************* 

                        ******************* 

                       ********************* 

                        ******************* 

                        ******************* 

                         ***************** 

                           ************* 

                             ********* 

 

 

Drawing the circle in outline 

 

The next step in this exercise then is to consider drawing the shape of the circle in outline. At this 

point, the obvious change is to replace the < comparison with equality comparison (i.e. replace 

the logical expression  x * x + y * y < r * r   with  x * x + y * y == r * r  in the if 

statement inside the nested loop). This change is made and the output shows only four points on 

the circle where x = 0 or y = 0. The sample output from this change is in the following figure. 
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                                 * 

 

 

 

 

 

                       *                   * 

 

 

 

 

 

                                 * 

 

 

At this point I remind the students that we cannot expect the (column, row) grid positions of our 

text window to satisfy the equation of the circle exactly and so we must test for approximate 

equality. By introducing an appropriately valued tolerance parameter we then modify this 

program to work correctly.  The logical expression x * x + y * y == r * r is now replaced 

by:  fabs(x * x + y * y – r * r) <= tolerance. 

The resulting output is shown below (for suitable values of r and tolerance) 

 

 

                              ******* 

                           **         ** 

                         **             ** 

                        **               ** 

                       **                 ** 

                       *                   * 

                       *                   * 

                       *                   * 

                       **                 ** 

                        **               ** 

                         **             ** 

                           **         ** 

                              ******* 

 

 

Highlighting difference between integer and floating point arithmetic 

 

I then introduce a fourth version of the program which is identical to the third version except that 

the named constants LPI and CPI are declared as integer numbers rather than floating point 

numbers. For standard line printers LPI = 6 and CPI = 10 so it seems reasonable to declare these 

as integer type rather than a floating point type. This causes the translation from (column, row) 

P
age 11.518.4



positions to (x, y) coordinates to use integer division and as a result the circle morphs into a 

collection of rectangles or almost disappears (depending on the value of the radius chosen).  See 

a sample output below. 

 

 

                        ******************* 

                        ******************* 

                        ******************* 

                        ******************* 

                        ******************* 

                        ******************* 

              **********                   ********** 

              **********                   ********** 

              **********                   ********** 

              **********                   ********** 

              **********                   ********** 

              **********                   ********** 

              **********                   ********** 

              **********                   ********** 

              **********                   ********** 

              **********                   ********** 

              **********                   ********** 

                        ******************* 

                        ******************* 

                        ******************* 

                        ******************* 

                        ******************* 

                        ******************* 

 

 

This dramatic change in output tends to draw the attention of the students and I take the 

opportunity to point out the difference between integer and floating point division. 

 

Efficiency issues 

 

All of the versions discussed above have the same basic nested loop structure where for each 

character position in the output device, we make a determination whether to put a blank space or 

a visible character there. A more efficient solution is possible if for each line position we 

calculate the corresponding y-coordinate, and then solve the equation of the circle for x (i.e., x = 

√(r2 − y2))  to find the corresponding x-coordinates, and plot the points on the output device. This 

solution now requires only one loop, and can be used as an illustration of how more efficient 

solutions can be devised by further analysis of a problem. The following figures show the 

essential modification to the problem solution and a sample output. 
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 // loop to go through all lines in the window 

 for (int j = YLOW; j <= YHIGH; j ++) { // for each line 

  // calculate y coordinate relative to center of screen 

  y = (j - YCENTER) / LPI; 

  float ysq = y * y;  // square of y 

  if (ysq <= rsq) { // no solution otherwise [ rsq = r * r ] 

   x = sqrt(rsq - ysq);  // the positive root 

   // x coordinates of two grid points that satisfy  

   // the equation (closest possible) 

   int first = round(XCENTER - x * CPI); 

   int second = round(XCENTER + x * CPI); 

   // plot first point 

   cout << setw(first) << '*'; 

   // plot second point only for non-degenerate case 

   if (second > first) 

    cout << setw(second - first) << '*'; 

  } // end if 

  cout << endl;  // end one line 

 } // end for j 

 

 

Sample output 

 

 

                                 * 

                           *           * 

                          *             * 

                        *                 * 

                        *                 * 

                       *                   * 

                       *                   * 

                       *                   * 

                        *                 * 

                        *                 * 

                          *             * 

                           *           * 

                                 * 

 

 

One notable difference between this picture and the one with the nested loop is that in each line 

only one or two points are plotted and so one may consider this output to be visually less 

appealing. 

 

Conclusion 

 

I have used this particular exercise sequence in my classes a few times and it certainly aroused 

my students’ interest to see small changes in a program lead to unexpected results. The exercises 

described can be implemented in major languages in use today with little modification. I believe 

that the examples given here show that Low resolution graphics can be exploited to enhance 

students' appreciation of some aspects of computer programming that are not easily assimilated. 
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While today’s computers generally provide for bit-mapped (i.e., high resolution) output devices, 

the packages to be used tend to be platform dependent. A notable exception is the Java language 

in much use today, which does provide for a graphics package that can run on any platform. 

However, I should note that learning to use such packages (at least in Introductory Programming 

classes) usually involves instantiating some objects from a library class and calling the required 

methods, and do not require any significant problem solving activity. Of course, dealing with 

individual pixel positions to draw shapes would require solving a problem, but the essential 

features of such problem solving can be tackled even in the low resolution context. For this 

reason I think that low resolution graphics should be more widely used to create interesting 

programming exercises as the solution techniques are essentially independent of computing 

platform or programming language that one may be required to use. 
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