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Abstract 

 

The area of embedded (computer) systems represents a very fertile framework for electrical and 

computer engineering students to acquire their major design experience. Analog, digital, and 

mixed-signal technologies continue to evolve at a very rapid pace, with a large gap existing 

between fundamental topics covered in introductory courses and the integrated knowledge and 

skills needed by practicing engineers to design embedded systems. Consequently, students 

involved with design projects that incorporate embedded (digital) computers have the 

opportunity to learn how to extend knowledge and skills acquired in introductory courses while 

participating on multidisciplinary teams to formulate realistic solutions to contemporary 

engineering design problems.  

This paper is intended for both faculty and students actively involved in coursework associated 

with the major engineering design experience. It provides background information on embedded 

systems that builds upon topics typically covered in introductory electrical and computer 

engineering courses. It then identifies contemporary design methodologies and design constraints 

for components and systems that contain embedded computers to monitor and control processes. 

It also describes and illustrates how many of the standard educational program objectives can be 

fulfilled when students work in teams on projects involving embedded computers. These include 

the major engineering design experience itself, multidisciplinary teaming, contemporary topics, 

and lifelong learning. 

The paper provides a basic model for embedded systems by first defining the embedded 

computer as a programmable state machine and an embedded system as a physical system that 

contains one or more embedded computers. Such systems often contain sensors, actuators, 

communication interfaces, user interfaces, and a human operator. The paper then identifies the 

generic design criteria and challenges that confront the embedded-system designer. These 

include: real-time requirements, fault-tolerance requirements, testability requirements, time-to-

market requirements, and product life-cycle requirements. These design considerations—coupled 

with the more traditional design requirements associated with products that do not incorporate 

embedded computers—are realized by applying an embedded system design methodology that 

emphasizes a hierarchical design process, the judicious choice of a system specification 

language, the reuse of intellectual property (IP), and the co-design of hardware and software. 
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I.  Introduction 

 

In 1997, Michigan State University introduced a new course EE 482—Capstone: Computer 

System Design
1
. This course was intended to serve as the cornerstone of the major engineering 

design experience for undergraduate students majoring in computer engineering. The course 

learning objectives are summarized as follows: 

Students will learn about embedded systems—i.e., electrical systems that contain 

embedded computers to control processes. At the completion of this course, each 

student should have actively participated as a member of an engineering design 

team and made significant contributions to achieving the team’s stated goal and 

objectives. Each design project should involve the collaborative development and 

evaluation of a “product” that contains and embedded computer. 

As of 2001, more than 300 students had enrolled in this course. Extremely positive feedback was 

received about this course from these students; from perspective employers of these students; 

from former students who had taken the course and graduated; and, finally from the 1998-99 

ABET site-visit team
2, 3

. Because of this feedback, the faculty in the Department of Electrical 

and Computer Engineering voted in 2001 to drop the department’s five separate capstone design 

courses and replace these with a single course that would serve students majoring in both 

electrical engineering and computer engineering. This new course is entitled ECE 480—

Electrical and Computer Engineering Capstone Course
4
. It was modeled after the original EE 

482 course, with some changes to reflect lessons learned while offering EE 482 each semester 

over a five-year period. 

One of the most important lessons learned since EE 482 was first introduced in 1997 has been 

that the area of embedded (computer) systems represents a very fertile framework for electrical 

and computer engineering students to acquire their major design experience. Analog, digital, and 

mixed-signal technologies have continued to evolve at a very rapid pace, with a large gap 

existing between fundamental topics covered in introductory courses and the integrated 

knowledge and skills needed by engineers who design embedded systems. Consequently, 

students involved with design projects that have incorporated embedded (digital) computers have 

had the opportunity to learn how to extend knowledge and skills acquired in introductory courses 

while participating on multidisciplinary teams to formulate realistic solutions to contemporary 

engineering design problems. 

This paper is intended for both faculty and students actively involved in coursework associated 

with the major engineering design experience. The next section of this paper defines key 

terminology associated with embedded computers and embedded systems. Section 3 provides an 

overview of the design criteria unique for embedded systems. Section 4 describes the key 

elements associated with the design methodology for embedded systems. The paper concludes 

by describing how the embedded-system design projects naturally address many of the 

Educational Program Objectives delineated in ABET’s Criteria for Evaluating Engineering 

Programs
5
. 
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II.  Embedded Computer Systems 

 

Overview of Embedded System Modeling and Design 
 

Embedded computers and embedded systems are terms often encountered in today’s world of the 

electrical and computer engineer. However, these terms are somewhat vague and often 

misunderstood. This is so because integrated-circuit technologies have evolved at a rapid rate 

during the last couple of decades. Increased chip complexity and chip functionality—coupled 

with new product innovations—have helped blur the definitions. In the modern era, nearly three 

billion CPU’s are put to market every year
6
. And the number will only continue to rise at an 

impressive rate. 

One of the foremost questions related to the design of embedded systems is the following: What 

should be classified as an embedded computer? As an example, consider the personal computer 

(a.k.a., PC), which immediately evokes the following secondary questions:  

 

• Does the PC contain one or more embedded computers?  

• If so, can the PC itself be viewed itself as an embedded system?  

• Could the PC itself be viewed as an embedded computer if it is incorporated into a 

higher-level application—i.e., an automatic test system on a factory floor?  

• Should something—such as a PC—be classified as an embedded computer based 

upon its deployment within a larger physical system? 

 

These are important questions for today’s practicing engineers who design—or specify—new 

application-specific computers
7, 8

. This is so because these engineers must make critical 

decisions that ultimately affect product development costs, manufacturing costs, overall product 

reliability, product life cycle, the creation and/or reuse of intellectual property, etc. We answer 

these questions in the sub-sections that follow by first providing a generic model for an 

embedded computer. We then use this model to define the concept of an embedded system. 

Model of an Embedded Computer 
 

From an abstract perspective, we view the embedded computer as a basic system building block 

(see Fig. 1). Our embedded-computer model incorporates the following important 

physical/logical attributes. 

Input—I(k) 

Clock—C(k) 

Output—O(k) 

State—S(k) 

Embedded Computer 

Figure 1. Block diagram illustrating the essential elements of an embedded computer. 
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Discrete time—k:  Time advances discretely in our model of the embedded computer. However, 

discrete time can be mapped into continuous time, and vice versa. For example, one unit of 

discrete time may equate to a 25-ps interval of physical time. With respect to Fig. 1, the 

transition between the current and next discrete-time interval is marked by the positive transition 

of the Clock—C(k). If the current time slot is k, then the previous time slot is defined as k-1 and 

the next time slot is defined as k+1. Although the duration of individual time slots might be 

equal, this is not a requirement for our embedded computer. Faster is not necessarily better 

because power dissipation may be a major design consideration. Hence, the embedded computer 

might perform some of its activities at a relatively low speed or at a relatively high speed. 

Alternatively, the embedded computer might even be placed in a “pause/sleep mode” to further 

reduce overall power consumption. In summary, the clock—C(k)—may have a constant 

frequency, a variable frequency, and possibly even a pause mode whereby clock cycles cease. 

Input—I(k):  The input is a digital data word—comprised of bits of information. The number of 

bits in I(k) depends upon the requirements of the embedded computer. 

Output—O(k):  The output is also a digital data work—comprised of bits of information. And 

like I(k), the number of bits in O(k) depends upon the requirements of the embedded computer. 

State—S(k):  The state of the embedded computer may also be modeled as a digital data word, 

with the number of bits being determined by the overall requirements of the embedded-

computer’s application. 

State machine: If the “current time slot” is k, then the “current input,” “current state” and 

“current output” are I(k), S(k) and O(k), respectively. If we neglect physical timing parameters—

such as input setup time, input hold time, and propagation delay, the present state—S(k)—and 

next output—O(k+1)—can be defined mathematically as a Mealy Machine
9
 as follows: 

  
 ( ) [ ( 1), ( 1)]S k f S k I k= - -  (1) 

and  

 ( 1) [ ( ), ( )]O k g S k I k+ =  (2) 

 

This set of equations defines the basic properties of a generic state machine. The embedded 

computer is a state machine; however, it has one additional important attribute. 

Programmability: The state machine is user programmable. By this we mean that the set of 

allowed states—as well as the transition between specific allowed sates—can be modified to 

meet the specific needs of its intended application. This programmable state machine can be 

modeled as having both hardware and software and, hence, represents what is often referred to as 

a computer. However, we are very careful not to assign any more specific physical or logical 

characteristics to this computer, other than those illustrated in Fig. 1 and described above. 

Embedded computer:  If this programmable state machine is embedded within larger physical 

system—i.e., it is not an isolated entity but rather is an integral component of a larger system—

we refer to it as an embedded computer. P
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In summary, embedded computers are user-programmable state machines that may be 

programmed to perform some useful task(s) within some larger physical system. We refer to this 

larger physical system as an embedded system
10

 and present a generic model in the next section. 

Generic Model of an Embedded System 
 

The embedded system illustrated in Fig. 2 contains five distinct sets of components—i.e., 

application, embedded computer, sensor, actuator, and human
11

.  

Application:  The embedded system has a purpose, and we refer to this purpose at the 

application. As integrated-circuit technology advances, new embedded-system applications 

become feasible. Only a partial list is provided below: 

• To control an elevator in an office building; 

• To control the breaking action of an automobile; 

• To control the takeoff/landing of an airplane; 

• To authenticate the identity of an individual who is in the process of making a 

banking transaction; 

• To perform quality-control inspections on an assembly line; 

• To monitor wear of the bearings in a large rotating machine. 

 

The six applications listed above all related to two basic classes of embedded-computer usage—

i.e., to process information and to control processes. 

Sensors:  Sensors acquire information regarding the behavior—i.e., state—of the application and 

translate this information into data sets that can be processed by the embedded computer. The 

sensors may be simple transducers or themselves complex embedded systems. Sensors in 

embedded systems might be used: 

Figure 2. Model of an embedded system. 

Embedded 
Computer(s) 

Sensor(s) 

Human(s) Application 

Actuator(s) 
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• To monitor the heartbeat of a person wearing a pacemaker; 

• To monitor the acidity of a cleaning agent used in a manufacturing process; 

• To monitor the temperature/humidity inside a greenhouse; 

• To monitor the separation distance between two objects—e.g., a commercial 

airplane and the ground. 

 

Actuators:  Actuators—a.k.a., effectors
11

—perform the inverse function of sensors. They 

convert “…an electrical signal from the computer’s output to a corresponding physical action 

that controls an application’s function
11

.” For example, actuators might be used: 

• To increase or decrease the ambient light intensity in a room; 

• To change the speed of a rotating machine; 

• To lock a door in a bank; 

• To power down an inactive PC to a standby mode to conserve power. 

 

Humans:  Humans play a central role in embedded systems and are, therefore, identified in Fig. 

2 as the central element in our model of an embedded system. Humans have critical roles 

throughout the lifecycle of an embedded system. 

• They design the embedded system. 

• They implement it. 

• They operate it or at least oversee its operation. 

• They troubleshoot/maintain it. 

• They modify/upgrade it. 

 

Recognizing these diverse roles at the outset of the embedded-system design process enables the 

design engineers to build security, safety, testability, fault-tolerance, fault-avoidance, etc. into 

the designed system. For example, an “operator” of an “embedded-system application” on the 

factory floor may inadvertently change a parameter that might lead to defective parts being 

produced or catastrophic failure of the entire manufacturing process. Design engineers need to 

understand these possibilities and then design the hardware/software in such a way that the 

“operator” does not have the ability to change these critical parameters. As illustrated in Fig. 2, 

humans play a central role in monitoring the application; installing and maintaining the sensors 

and actuators; configuring and interacting with the embedded computer. 

Embedded Computers: With the model of the embedded computer in hand (see Fig. 1) and its 

placement in the embedded system (see Fig. 2), we are now able to understand the relationships 

between the physical/logical characteristics of the embedded computer and the rest of the 

embedded system. The embedded computer has three basic purposes, as illustrated in Fig. 2. 

• It monitors—through the sensors—the state of the application. 

• It changes—through the actuators—the state of the application. 

• It provides an interface for humans to monitor the application and to supervise all 

aspects of the operation and maintenance of the sensors, actuators, embedded 

computers and application.  
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III.  Design Criteria for Embedded Computers and Systems 

 

Although the generic models of an embedded computer and an embedded system appear to be 

quite simple, the design criteria and design methodology for implementing them is not. This is so 

because of the wide variability of embedded-system applications.  

Based on the intended application there is a certain level of functionality that must be met in 

order for the embedded system to successfully complete it’s given tasks. There will also be 

physical constraints to consider. For example, inside of an automobile, an embedded system will 

have a given shape and size that is mandated by other factors. Other physical requirements 

include environmental factors such as temperature, resistance to vibration, and weight. Some 

systems may have power concerns, especially portable applications. All of these constraints must 

then fit within a given cost that is pre determined. The usual relationship between these is that as 

size and performance go up, the cost also goes up. A balance must be reached that will satisfy the 

performance and physical requirements, while maintained an adequate cost. 

Often times, simply meeting these often-cited design requirements will not provide an adequate 

product life for a newer and more advanced product to be developed and brought to market as a 

replacement. The product life cycle must include the end of one product with the introduction of 

a new product. This often includes the requirement that the process of generating a new product 

also leads to the development of new intellectual property (IP) and new markets for the 

company’s core business.  

These are many of the general issues that routinely design engineers. However, there are 

additional ones that relate more specifically to the design of application-specific embedded 

computers and embedded systems. These are identified and discussed in the sub-sections that 

follow.  

Real-time Criteria 

 

Real-time systems distinguish themselves from other systems by the involvement of time and 

system correctness
13

. Embedded systems are used in a wide variety of applications. Some of 

these are very trivial, such as the system in a desktop digital clock. If for some reason the chip 

inside a digital clock controlling the LCD display didn’t meet its timing requirements, the worst-

case scenario is that the digits flip to the new time reading a little late. This normally would have 

no diverse affect on anything outside the system. Other embedded systems however are in very 

critical applications. Some examples of this are power plant controls, embedded tactical systems, 

flight mission control systems, and traffic control systems.  

The difference between these types of real-time systems is how strict the requirements are for 

meeting the application-imposed timing criteria. A hard real-time system is one in which meeting 

the deadline is absolutely necessary
13

. A nuclear plant system or avionics controller would be an 

example of this. On the other side, a soft real time system won’t necessarily have a failure or 

critical problem arise from missing a timing deadline. It may even be possible that a missed 

deadline simply causes the system to wait a little longer for the results, in essence rescheduling 

operations to accommodate for the delay. Under the right circumstances however missed 

deadlines do still have the potential to cause system instability. An example of a soft real time 

system would be a video conferencing system. Missing a deadline could cause the video to have 
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distortion or go dead temporarily, however the service may still continue. The importance of 

missed deadlines in this scenario is more a factor of what quality of service is desired
13

. The 

most important design concern in a real time system is predictability.  

A hard real-time system must be able to guarantee predictability in regards to meeting its timing 

deadlines. A deadline is a timing constraint that is typically associated with an event. More 

important in regards to meeting timing deadlines is consideration of the worst case. Predicting 

worst-case timing events is critical in system modeling. Some other key issues are data access 

policies with regard to shared resources. Other systems may be utilizing shared resources, which 

could prevent a system from meeting a timing deadline. Priority assignment to appropriate 

threads running on a processor is also important. These are many of the concerns existing today 

in real time systems.  

All of these must be accounted for when an embedded computer is modeled in software. Testing 

software and routines should be able to identify and investigate issues with worst-case timing 

and system predictability. Moving beyond the ability to meet a timing constraint, a system must 

also be able to deal with a potential failure. If a timing deadline is missed in a hard real time 

system then the system must be able to continue operation and recover from this miss. To stay 

stable, the system must identify the problem and either correct it or ignore it so that the system 

does not crash. A lot of the methodology behind this is derived from fault tolerance. 

Fault-tolerance Criteria 

 
There are many reasons why fault tolerance is needed in embedded computer systems. Real-time 

systems need to be fault tolerant so that in the event of a missed deadline the system can remain 

stable and recover without having any down time. Timing problems however aren’t the only 

reason for a need for fault tolerance. Embedded computer systems such as those in automobiles 

need to be fault tolerant so that users can be notified of problems before they cause a critical 

failure that may cause the loss of life. In manufacturing, the increasing use of robots for mass 

production has increased the need for reliability and fault tolerance
14

. In some sense the addition 

of fault tolerance however works against itself, as more hardware must be added which itself can 

also fail. Reliable embedded computers include many mechanisms for system stability including 

self-checks, and self-diagnosis
15

.  

The ultimate goal of a fault tolerant system is to maintain stability through a fault until a repair 

can be made. If a faulty component is detected, a system may activate a backup unit, or simply 

deactivate the unit if it is non-critical to system operation. Fault tolerance in today’s applications 

however is difficult to implement because they carry high performance penalties with them
16

. 

Large complicated embedded computers may simply have too much hardware to be able to 

monitor everything. The easiest systems to monitor for error detection are data paths. These can 

be monitored using parity or more advanced error detection techniques. On detection of an error 

a system may ignore the data, or try to process the data again.  

Control paths are more difficult to monitor. Today, it is not plausible to create fault-tolerant, 

single-cycle control paths. Error detection and correction must be done on the next state, which 

could provide an impact to real time systems that have timing constraints. In the design stages, 

engineers must work with management teams to determine what level of fault tolerance a system 

will need. Fault trees and Markov models can be used to evaluate the cost effectiveness of fault 
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tolerance in designs. These models aren’t completely accurate, however, since it is difficult to 

model the probabilities of failure in different environments and system configurations. For this 

reason, there is a great deal of research being put into modeling fault tolerant systems. One 

approach is the development of fuzzy Markov models. These models attempt to create 

probabilities for probabilities to estimate possible potentials for failure. Fault tolerance offers a 

very rich field of work in developing hardware and software solutions, as well as the ability to 

model error detection routines and solutions. 

Testability Criteria 

 
With the increasing use of embedded computer systems in every day items it is expected that 

they are more and more reliable and cost efficient. A typical user expects that a product 

purchased will function correctly and reliably. For this reason manufacturers are beginning to 

include testability features, which in the past were seen only in high-end expensive systems. 

Testing techniques vary depending on the type of circuit in question, however there are many 

common threads. In the field of Programmable Logic Devices (PLD’s) the most typical circuit is 

the Field Programmable Gate Array (FPGA)
17

.  

FPGA’s are used as logic circuits and to store memory. As with most circuits however, the 

advances in technology that makes newer FPGA’s attractive for design solutions make them less 

reliable at the same time. Radiation affects smaller feature sizes more and larger die sizes are 

more susceptible to interference radiation. Common faults in FPGA circuits are stuck on faults, 

in which a cell may always output a 1 or 0, and design errors, which can cause erratic behavior 

under certain input conditions. Testing can be accomplished through internal resources or 

external hardware. External hardware must take the FPGA offline, however, to perform its test 

and functionality is temporarily lost. Internal resources are capable of online testing by slowly 

roving over the chip testing units one at a time when they are not in use. The FPGA as a whole, 

however, remains online and ready for use.  

Memory faults are categorized into the following groups. Parametric faults are related to design 

errors and may be output levels being too low or inadequate fan out capability. Functional faults 

include pattern sensitive, stuck at, and coupling faults. Pattern sensitive faults only emerge when 

certain inputs are applied. Stuck at faults are cells in which the output is always a 1 or 0. 

Coupling faults occur when certain conditions inside the circuit cause a bit to incorrectly flip. 

Looking away from FPGA’s to other circuits, Built in Self Test (BIST) is a common term used 

for internal hardware testing. This capability can be included on many systems including 

microprocessors. The types of faults that BIST units look for are permanent faults, intermittent 

faults, and transient faults
18

. Different methods however are needed to detect these different 

types of faults. Permanent faults remain in existence all the time. These faults can be detected 

through the use of concurrent testing over time. Concurrent testing happens while the chip is in 

operation. It is very good at detecting errors however can take a lot of time to isolate the fault 

causing the error. Intermittent faults happen some times and disappear at other times. Sometimes 

they are influenced by environmental conditions however the effects of the fault are highly 

correlated. Transient faults are very similar however there may be no correlation between the 

detected error and the fault. These types of errors are best detected by non-concurrent testing. 

Non-concurrent testing is either initiated by events, or on a timetable. An event may be system 

startup or shutdown. In order to isolate an intermittent fault it is essential to perform periodic 

testing.  
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The level of BIST put on an embedded system must be determined from a system design and 

marketability perspective. Extra hardware for system testing can increase the cost of the system. 

There are other affects of BIST however that impact system performance. As the error coverage 

of BIST hardware increases, the error and fault latency, space and time redundancy also increase. 

Error and fault latency is the amount of time required to detect an error or fault after its onset. 

Space and Time redundancy refers to the extra hardware and time needed for online testing. Self-

testing requires the use of resources within the chip. The more time it takes a chip to perform a 

self-test the more clock cycles are lost. In an ideal situation, a BIST process would have 100 

percent error coverage, 1 clock cycle of latency, and no space or time redundancy. The AMD-K6 

is an example of a chip that uses many advanced BIST techniques to lower design costs
19

. The 

K6 is a fully scannable microprocessor with support for boundary scanning of I/O cells, and 

JTAG IEEE 1149.1 compatibility. Inside the K6, every functional block contains a BIST routine. 

AMD is not the only company leading the way of implementing BIST. Embedded computing 

covers a wide range of fields such as automotive or household items. As these systems all 

become more complicated they are all receiving more and more advanced BIST techniques to 

lower overall costs of design and in field implementation. Research in techniques to more 

effectively test circuits while saving space and time is constantly ongoing. 

IV.  Design Methodology 

 

With some of the concerns regarding design criteria addressed some of the methodologies that 

exist in the design process can be investigated. Similar to most of the design criteria, design 

methodology is an evolving science. For every process that already exists, there is another in 

development to replace it. Even with all the progress that has been made in embedded computing 

technology, there are still a lot of deficiencies in the design process. Methodologies are needed to 

simplify the design process. With established methods for design, companies save time and 

money, which is essential to the making of a profit and the turnover of good product. Time to 

market is constantly getting more and more difficult to meet as competition in the embedded 

computer realm increases with more demand. 

Hierarchical Design Process 

 

The design process of an embedded computer system will ultimately make or break a design. For 

example, the design process will affect the time-to-market, the reliability of the design, and the 

ability to re-use portions product (IP) previously designed and tested. There are several 

components necessary to a successful design cycle. Organization of the design steps comes first. 

It should be easily understandable from many other life experiences that a successful design is 

one that is planned well. When designing a system of any kind, one should first develop a clear 

and concise specification of what is to be designed. Included in this specification are all 

requirements of the system including but not limited to physical, performance, cost, and 

environmental constraints. When writing this specification, it must be usable by any design team. 

For this reason we need a system specification language.  

There are many different types of specification languages on the market for different needs. 

VHDL and Verilog are hardware languages
20

. They can be used to create simulations of 

hardware and describe behavioral models. Assembly and C are example of software languages. 

As a specification of the system is developed, the pieces of hardware in hardware specification 

language can be packaged as reusable IP blocks
21

. Different manufacturers can reuse these 
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blocks in different designs. Sometimes IP blocks are called virtual components or cores
22

. One 

challenge when working with cores is interfacing between them when the cores are written in 

different specification languages. This demonstrates further the need for organization in the 

design process to minimize communication errors between software packages.  

To further aid in organization of the design process are hardware-software co-design packages. 

These help in the management of features between hardware and software. Through the use of 

specification languages, IP cores, and co-design packages it is possible to minimize design cycle 

times and get products to the market faster. Competitiveness however keeps the development of 

new techniques for organized hierarchical design critical to keeping a competitive edge. 

System Specification Language 

 
In the design process things must be simulated and coded at some point. It is important that 

standards for this process be developed that can adequately handle the variety of different 

components of embedded computer system design. In current system specification language 

theory there are different ways to model systems
23,

 
24

. State Oriented models can be finite state 

machines, Petri-nets, or hierarchical concurrent finite state machines. These models use a set of 

states and show the transitions between them. They are mainly used in modeling systems that 

react to external input or events. Other methods of modeling include activity-oriented models 

such as data flow graphs and flow charts. Often used in digital signal processing, they show a set 

of activities and their relation to data and control dependencies. Structure oriented models such 

as component connectivity diagrams usually show the physical modules themselves and the 

interconnections between them. Entity-relationship diagrams are a form of data-oriented models, 

which show the relationships between data that is processed by the system. Finally there are 

heterogeneous models such as control data flow graphs and program-state machines. These 

models in essence combine many of the features of all the different models already mentioned to 

form a large system model. 

The overall goal of a System Specification Language is to describe non-

ambiguously the desired functionality of a system.
24

 

System specification languages include telecommunication, real-time system, hardware 

description, programming, parallel programming, and data-flow languages. They are used in the 

modeling and description of nearly all types of embedded systems and computers. There are 

many languages that have already been developed however many still have shortcomings that 

need to be developed. Lotos, SDL, and Estelle are telecommunication languages. Esterel and 

StateCharts are both real-time system languages. Hardware description languages include 

VHDL, Verilog, SpecCharts and HardwareC. C
X
 and SpecC are programming languages and 

CSP and Occam are parallel programming languages. Lastly, Silage is a data-flow language. The 

reasons for having a fully developed and functional specification language are so that standards 

are present for the development and modeling of embedded computer systems. This ties in 

closely with other design methodologies such as Hardware-Software Co-design and Intellectual 

property reuse. With standards in place, this allows exchangeability of modeling code with other 

companies and organizations. Work continues in the developing of better specification methods 

and modeling techniques. There is a lot of opportunity available in this field. P
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Hardware-software Co-design 

 
The goal of hardware-software co-design is to manage the integration of software and hardware 

to make a functional product. Embedded computers are in nearly all cases mixed 

hardware/software systems. A co-design process defines the hardware and software partition and 

their interaction to make a final product. In the design process both hardware and software can 

be used to achieve the project goals. Hardware is usually faster and better at meeting timing 

constraints. Some cons of hardware however are redesigns becoming very costly, and user 

updates being difficult and expensive. With software, features are easier to add, the design cycle 

is less expensive and shorter, and in field updates are possible. Cons of software are the ability to 

meet timing requirements. The traditional design process involves software and hardware teams 

working independently to design their corresponding components
25

. A hardware team will work 

on designing a microprocessor, while the software team may be programming the code to run on 

the microprocessor. During the design phase, little interaction may happen, and no testing is 

possible until finished product becomes available.  

With a co-design package, some of these challenges are diminished or eliminated. The software 

package will now handle the partition of what’s in hardware and what’s in software. Design 

teams will know exactly what features need to be coded and what are designed for in hardware. 

As design changes are made and different tasks are handed off the co-design package will track 

these changes and ensure that all features continue to be accounted for. Hardware-software 

handoffs are also tracked. This insures that during the design phase, fewer errors are made in that 

the software is designed for the hardware and vice versa
26

. With fewer total errors during the 

design process the cost of development is lowered significantly. System debug and test is also 

easier. The debug stage normally can’t begin until finished products start to return from 

fabrication. With a co-design package working inside a system specification language the debug 

of a system can begin without physical hardware being present.  

Through the use of behavioral models, software can be simulated on the developing hardware 

and testing can be completed sooner, speeding up the time to market. These behavioral models 

will then become part of the intellectual property package that will be developed and perhaps 

sold to other companies for use in their products. These models can be used in other design 

processes to verify that a developed piece of property can be used in another design
27

. 

Advantages of hardware-software co-design extend into the investigation of product upgrade 

possibilities and in-field debug of current products. Software and hardware behavioral models 

can be simulated together to investigate problems and try solutions before actual changes are 

made.  

Existing co-design packages include SystemLab
28

, The Chinook Project
29

, POLIS
30

, and 

Cadence
31

. Each of these packages has strengths and weaknesses. A common weakness is nearly 

all packages are accurate simulation of software running on hardware. Other challenges in 

current software are the ability to easily represent design models in a way that’s easily 

comprehensible. The opportunity for development and growth in co-design is large with these 

companies. Cadence has cited a 50% increase in digital-analog system design in the coming 

years. Digital-analog design is a new and developing aspect of hardware-software co-design. As 

previously mentioned the design of behavioral models in the co-design methodology leads into 

the use of intellectual property. 

P
age 9.522.12



   

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

Reuse of Intellectual Property 

 
Intellectual Property (IP) has grown to be of great value in today’s market. Without IP reuse the 

rate of development for new chips would be impossible to maintain. The typical designer at best 

can code one thousand lines of code per month to generate up to ten thousand logic gates. The 

average semi conductor has well over 5 million gates, with some pushing far more then this
32

. If 

designers generate half of the 5 million gates then 20 engineers would be needed to work on the 

integrated circuit and complete it in a one year design cycle. This means that IP reuse is needed 

to complete a circuit within a tight design cycle. Many large companies have large libraries of IP 

that are reused in circuits to complete design objectives. When designing a circuit with five, ten, 

or even more transistors, it’s going to have to be done in bigger blocks, not individual gates
33

.  

Most IP can be categorized into two sections—i.e., System IP and Component IP. System IP is 

involved with the ability for system integration, such as partitioning and architecture. Component 

IP is a stand-alone unit that completes a given function, such as a memory design. Despite the 

importance of reusing IP, it is also important to develop new IP. The lively hood of many 

companies exists in the creation and marketability of IP. A large company may sell parts of its 

libraries to other design teams. Some IP manufacturers may develop IP strictly for use in other 

company’s designs and not for their own use. The Virtual Socket Interface Alliance (VSIA) 

made a prediction in the past that over a 10-year period, the average rate of IP reuse in design 

would go from 10% to 90% in any given chip. Along with this increase in reuse, the number of 

transistors used on any one chip would increase by a factor of 50. An important decision for 

many companies will be how much reuse? Should additional libraries be purchased, or new 

circuits researched? When developing libraries, three important factors to any given component 

must be fulfilled. These are reuse documentation, the library component, and verification 

support
34

. Necessary to the component’s architecture is to account for the potential for reuse. 

This involves anticipating components incorporation into a design. Making it as easy as possible 

to hook up and test circuits functionality within another design is not to be taken lightly.  

There are many IP reuse tools that are already developed for today’s use. Again, however, there 

are many shortcomings and items still in development. Coware N2C Design System has the 

ability to capture both hardware and software architectures
35

. Using C or C++ as a system 

language allows for hardware and software tradeoffs to be made easily. Mentor Graphics, 

another large IP company, provides a large array of reusable cores
36

. All their soft cores are 

available in Verilog or VHDL for incorporation into designs. Development of IP reuse is 

essential to the progression of complex designs and keeping down design costs and cycles. The 

faster a product can be brought to market the more profit that can be made from it. 

V.  Discussion 

 

Student projects that require the use of embedded computers represents a very fertile area for 

electrical and computer engineering students to acquire their major design experience. Students 

have the opportunity to extend knowledge and skills acquired in a wide variety of technical and 

non-technical introductory courses while participating on multidisciplinary teams to formulate 

realistic solutions to contemporary engineering design problems. Students have the opportunity 

to integrate knowledge and skills needed by practicing engineers to design embedded systems.  P
age 9.522.13



   

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

Major Design Experience:  Projects that require the use of embedded-computer technology 

naturally fulfills many of the requirements of the major engineering design experience. It 

logically builds upon material contained in introductory courses and requires the integration of 

this knowledge and skills to design a useful product or system. Physics, chemistry, mathematics, 

statistics, computer science, electric circuits, electronics, communications, signal analysis and 

system analysis can be brought together in an integrated fashion to solve the design problem. 

Multidisciplinary Teaming: A single student cannot realistically undertake the embedded-

system design project. A diversified set of students would collectively possess more knowledge 

and skills needed to meet the overall design objectives. This would lead to communication 

amongst team members that would identify best strategies for meeting the design objectives. In 

addition, the project could not be completed on time if worked on by a single individual. 

Lifelong Learning:  Students working on contemporary embedded-systems projects will quickly 

discover that many of the questions they formulate cannot be answered by looking back into 

material encountered in previous courses. Technological change and the application of this 

technology advances at a much more rapid pace than does the content of textbooks. 

Consequently, students need to learn how to acquire new knowledge and skills. Coming to grips 

with the fact that all answers cannot be found in textbooks is an important step to realizing that 

problem solving and professional growth requires lifelong learning throughout ones career. 

Contemporary Topics:  If undergraduate engineering student design projects focus on the use 

of embedded computer to design a new product or improve on an existing product, students 

naturally have the opportunity to be exposed to a variety of important contemporary technical 

and non-technical topics. For example, we discussed in earlier sections of this paper 

contemporary topics that bridge both technical and non-technical fields—e.g., fault tolerance, 

safety, security, and the reuse of intellectual property.  These contemporary topics can also be 

addressed through the application itself—e.g., homeland security, improving the quality of life 

for people with disabilities, improving highway vehicle safety, and improving the health and 

quality of people. 

VI.  Summary 

 

We have had more than five years of experience supervising students on senior-level design 

projects that involve embedded computer systems. An undergraduate engineering program—

such as electrical engineering, computer engineering, mechanical engineering or chemical 

engineering—could become distinctive by virtue of the types of applications students focus on as 

they seek to fulfill the requirements for their major engineering design experience and other 

educational program objectives. For example, faculty responsible for a specific academic 

program might collectively decide to focus student projects in areas related to bioengineering. 

Students, faculty, alumni, employers of graduates, and long-term support for design projects 

could use the theme of “bioengineering/biotechnology” as a lightning rod to attract external 

recognition to the program. Embedded computer systems would be the enabler to help make this 

happen. Of course, bioengineering is only held out as one possible focus. It would be up to the 

faculty to decide how they would like to distinguish their academic programs. 
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