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Engaging Engineering Students Through  
Environmental Data Science 

 
Abstract 
In a world that is increasingly monitored, data management and analysis skills are valued and 
necessary in engineering. Despite the apparent advantages of a data-savvy workforce, 
engineering students often have negative attitudes and experiences with programming and data 
analysis. To improve these skill sets in engineering students, a course on environmental data 
analysis was developed and taught to a group of engineering graduate students (mostly civil 
engineering majors). The course relied on R and Excel and used R packages such as those in the 
tidyverse as well as modeling packages (e.g., fitdistrplus) and discipline-specific packages for 
accessing environmental data (e.g., DataRetrieval and cder). Real-world data sets were used in 
the examples and assignments: students analyzed data related to air pollution, climate, reservoir 
storage, water quality, and river flow. Students worked on importing data sets, data cleaning and 
wrangling, visualization, geospatial analyses, and modelling. Best practices integrated into the 
course included good and bad examples of data management, pair programming, live coding, 
worked examples with labeled subtasks, use of templates for assignments, and project-based 
learning. Student attitudes and experiences were monitored using surveys at the beginning and 
end of the term. Polls were conducted to assess specific teaching and learning strategies. The 
course structure provided a good opportunity for student collaboration and engagement. 
Environmental data analysis using data mining approaches and real-world data sets was a good 
way to engage students in programming and analysis, and to prepare them to work in an 
increasingly data-rich engineering workplace. 
 
Introduction 
Engineering students can have negative attitudes about programming, statistics, and data 
analyses [1,2]. While students may take statistics courses, they may not gain experience in using 
that knowledge to address real problems and work with large real-world data sets. Such data 
experiences are lacking from many engineering curricula [3]. Yet, knowledge of data science can 
be empowering—knowing how to use these skills can help students build confidence in their 
ability to become practicing engineers and scientists. Additionally, programming and other 
aspects of data science are beneficial for students because these activities align with modern 
tools, as well as reinforce critical thinking and analytical skills (e.g., understanding if statements 
and decision trees). Data science tools are increasingly used in engineering disciplines [e.g., 4] 
and the skills to use them are sought by employers [5].  
 
This paper examines techniques and best practices to improve students’ skills, beliefs, and 
experiences with programming and data analysis in the context of an environmental data science 
course. While learning data science skills can occur in many subjects, environmental issues 
present good applications [6]. All aspects of engineering have environmental issues (e.g., solid 
waste issues in electronics) and all students have some connection to environmental issues 
through their experience with air pollution, drought, and other environmental concerns. Because 
environmental data are often “messy,” there are opportunities for students to practice the data 
cleaning and wrangling techniques of data science. Environmental data also provides 
opportunities for students to apply visualization techniques and models. 



The arguments for teaching a class that incorporates data science using environmental 
applications are compelling, but the question remains: How do you best teach a class that 
incorporates programming and data analysis skills that students often lack? To address this issue, 
we looked to the pedagogy literature for guidance. 
 
Students’ struggles with programming and data analysis are not new. In the 1990s active learning 
in computer science consisted of mini-lectures, handouts containing work-out examples, and 
class time where students worked independently on projects [7]. This popular method of teaching 
programming evolved over time with new strategies being suggested and tested [8,9]. One such 
method is pair programming where students work in pairs at a single computer and periodically 
switch seats and roles [8]. Another method is live coding where the professor writes code in front 
of the class while interacting with students [10]. In addition to challenges in teaching 
programming, teaching statistics has its own challenges and incorporating computational tasks 
into statistics education is one of them [11,12]. The mini-lecture and active learning model was 
used by [11] in a data science course taught by faculty in statistics, while [12] recommended an 
emphasis on applications in a data analytics course. The use of real-world applications was also 
recommended by [13] in a physics programming course. In an inter-disciplinary course that 
included students from "business, liberal arts, and engineering and computer science,” [14, p.1] 
reliance on cross-disciplinary collaboration and business applications was used to increase 
student interest. In their work to incorporate data science modules into multiple STEM courses, 
[15] encouraged data collection activities as well as visualization and analysis to provide 
students with stronger connections to the data.  
 
The work by [8] to provide tips for teaching programming is especially compelling. Their tips 
are intended for any audience and any level of prior preparation, making these tips well-suited 
for instructors outside of computer science who are incorporating programming and data analysis 
into their courses (Table 1). The tips include recommendations that address student attitudes and 
experiences as well as provide specific recommendations regarding course content, assignments, 
and classroom activities (pair programming and live coding). Given the simple and actionable 
nature of these recommendations, we used [8] as a guide to teaching an environmental data 
science course. In reviewing the literature, it appears that evidence-based investigation of data 
science pedagogy at the course level is needed and this paper addresses that need. 
 

Table 1. Tips recommended by Brown and Wilson [8] for teaching programming. 
Number Tip 

1 Remember there is no geek gene 

2 Use peer instruction 

3 Use live coding 

4 Have students make predictions 

5 Use pair programming 

6 Use worked examples with labelled subgoals 

7 Stick to one language 

8 Use authentic tasks 

9 Remember that novices are not experts 

10 Don’t just code 



This paper first outlines the study objectives and research questions before examining the course 
and course structure. It then discusses the teaching techniques, outlines the assessment tools and 
results used, and summarizes what did and did not work to inform efforts in future courses. 
 
Study Objectives and Research Questions 
The objective of this study was to increase student engagement and improve data analysis and 
programming skills in engineering by transforming an existing environmental data analysis 
course into an environmental data science course. This transformation was accomplished by 
reducing the math and statistics content and increasing the time that students spent analyzing 
real-world data sets. Concepts from data science were used to achieve this transition (e.g., data 
cleaning and wrangling). The research questions explored in this study were: 
 

 Can authentic tasks improve students’ attitude and confidence about data analysis and 
programming? Pre- and post-course surveys were used to address this question. 

 Can the following intentional teaching techniques better engage students in learning: 
worked examples with sub-goals, live coding, pair programming, and presentation of 
good and bad examples? Polls were used to address this question. 

 
Course and Course Structure 
The course is called Environmental Data Analysis. It is a graduate course, open to all 
engineering and computer science majors. Although an introductory statistics course is not 
required, it is recommended. The course has been taught four times since 2016, evolving from an 
applied statistics course into a data science course. Previously, much of the course content was 
centered on statistics and practice of statistical concepts using textbook problems with a final 
project applying these concepts to a real-world data set. The last time that the course was taught, 
in Fall 2022, the statistics content was reduced, a textbook was not used, and the course almost 
exclusively relied on real-world data sets for lecture examples and homework assignments. Table 
2 outlines the lecture topics covered. In Fall 2022, there were 15 students with the following 
majors: 11 civil engineering, one mechanical engineering, two engineering management, and one 
computer science. Four of the students were traditional master’s students and the remaining 11 
were blended students who were simultaneously pursuing undergraduate and graduate degrees. 
All students had prior programming experience that was typically a course using Matlab. 
 

Table 2. Lecture Topics Covered in Fall 2022 Course. 
Initial Topics Probability and Statistics Testing Regression 
Data collection Random variables and distributions Linear regression 

Data analysis tools Fitting distributions Correlation 

Finding and importing data Using random numbers in eng. calcs. Logistic regression 

Data cleaning and wrangling Confidence intervals  

Exploratory data analysis One sample hypothesis testing  

Experimental design Two sample hypothesis testing  

Spatial data and mapping One-factor ANOVA  

 Two-factor ANOVA  

 Nonparametric tests  

 



The software used in the class is R with the graphical user interface of RStudio. Excel was also 
used in one assignment that relied on pivot tables to organize and summarize data sets. In R, 
functions of the tidyverse and the “piping” structure were used extensively. Statistical testing and 
model fitting packages were used (e.g., fitdistrplus) as were geospatial packages (e.g., sf). Data 
importing was done using various approaches, including the use of the dataRetrieval package to 
import data from the U.S. Geological Survey’s National Water Information System database and 
the cder package to import data from the California Data Exchange Center. One student used the 
RCloud online interface, while the remaining students used the desktop version of RStudio. 
Weekly assignment submissions consisted of the script files with a document containing a 
summary of answers, tables, figures, and written explanations of the work completed. Mid-
semester there was an article review assignment and at the end of the term there was a 
comprehensive project.  
 
Teaching Techniques 
Based on a review of the course content and the research questions posed herein, we ultimately 
choose to implement eight of the ten tips described by [8] as well as the use of good and bad 
examples (see Table 1 for the list of tips recommends by [8]). Additionally, the mini-lecture 
followed by work time model described by [7] was used for most lectures. 

Examining application of the tips by [8] in detail, Tips #1 (Remember there is no geek gene) and 
#9 (Remember that novices are not experts) were adhered to throughout the course. Framing was 
provided in the first class by showing a video by one of the developers of the tidyverse package, 
Hadley Wickham, who explained that people shouldn’t feel bad if they struggle with tasks in 
areas where they lack experience. To promote transparency, the paper by [8] was shared with the 
students and explained. Additionally, the recommendation to stick to one language (Tip #7) was 
adhered to although there was some use of Excel to discuss pivot tables. 

Use of worked examples with labelled subgoals (Tip #6) was implemented extensively 
throughout the class. All lectures contained at least one worked example that was organized by 
subtask. Templates were used for all programming assignments. The lectures focused on 
building skills, step-by-step and the course content led students through that process. After 
students were proficient at obtaining, cleaning, and visualizing the data, later assignments 
eliminated these tasks so that students could focus on analysis and modeling. Scaffolding was 
used to provide a lot of guidance initially and then less guidance in later assignments. While we 
were concerned that this might represent too much “hand holding”, the students “proved” their 
skills in the final project where no programming guidance was provided.  

For class purposes, the use of authentic tasks (Tip #8) most aligned with the research questions 
and goals of the course. Lecture examples, assignments, and projects relied on real-world data 
sets. The data sets used connected students with current issues such as air pollution and drought. 
Many of the sites were familiar (e.g., Shasta Dam and the Colorado River). We also used data 
from CalEnviroScreen, a tool used to investigate the interactions between environmental and 
socioeconomic factors and to identify disadvantaged communities. Other data sources included 
the U.S. Geological Survey, U.S. Environmental Protection Agency, U.S. Bureau of 
Reclamation, and California Department of Water Resources. Some data were accessed using the 
California Data Exchange Center. For the final project, students selected their own data sets. 



Many of the other tips were tested through lectures or assignments. Live coding (Tip #3), where 
the instructor writes code in class using input from students, was attempted during one lecture. 
Pair programming (Tip #5), where students work in pairs at a single workstation and periodically 
switch roles where one person is writing the code and the other is providing instruction, was also 
attempted. The students had the option to work on their projects in pairs, so pair programming 
occurred naturally but less intentionally on the project. Also, most of the class time was spent 
with students working on assignments and this work time was very collaborative. 

The tip to do more than code (Tip #10) was followed by talking about the data sets and sites that 
were used and discussing current issues (information about droughts and floods featured heavily 
in the news in Fall 2022). To improve the focus on the underlying data and environmental 
science questions, an entire lecture was devoted to developing and testing research questions. In 
one lecture a guest speaker delivered a presentation on environmental monitoring. 
 
The two tips that were not used were peer instruction (Tip #2) and having students make 
predictions (Tip #4). The decision not to include these tips was based on time limitations. 
 
In addition to the ten tips recommended by [8], the course also used good and bad examples. 
These examples were intended to show students the benefits of incorporating programming in 
environmental data analysis workflows and use of a data science approach. As a good example 
the instructor shared an experience that involved needing to download and compile over 500 
hazardous waste shipping manifests (each in a separate csv file). This was a good example of 
how programming can automate repetitive tasks. As a bad example, the students were given a 
data set obtained from a government agency and then asked to identify how the data set violated 
the tenets of “clean data” that were being taught in the class.  
 
Using the tips (other than Tips #2 and #4) plus the use of good and bad examples, the course was 
restructured to better assist students in learning data science skills. With the new structure came 
the assessment of the proposed research questions to see if the changes were effective. 
 
Assessment Tools and Results 
Surveys and polls were used as assessment instruments. Institutional IRB approval was obtained 
prior to administering the surveys and polls. All input from students was anonymous. As a result, 
it was not possible to link pre- and post- responses for individual students. The surveys and polls 
were distributed using paper copies and the students completed them during class. The instructor 
left the classroom while the students completed the surveys and polls.  
 
To assess the first research question about students’ attitude and confidence regarding their 
programming and data analysis skills, students took pre- and post-course surveys. The second 
research question about the effectiveness of specific teaching tools was assessed using polls.  
 
Student Attitude and Confidence 
Figure 1 shows the pre- and post- survey questions that were designed to better understand the 
students’ attitude and confidence, and the potential impact that the course had on these attitudes 



and their confidence. The pre- and post-course survey questions were identical. Lickert scales of 
1-5 were used for all questions except the last question that allowed for open-ended responses. 
 

Figure 1. Pre- and post-course survey questions. 
 
The survey results are first examined visually through the histograms, shown in Figure 2. As the 
figure shows, there is a clear trend of improvement across all questions. Especially relevant and 
showing strong trends are the strong improvements in writing basic code (Question 1), working 
with data (Question 3), comfort with R (Question 5), and attitude towards data analysis 
(Question 7). Attitude towards coding overall (Question 4) improved although the results look 
less defined and comfort with Excel (Question 6) also improved with less striking gains. The 
Excel question helps confirm the survey validity since only one assignment used Excel compared 
to the full semester of assignments using R. 
 
Statistically examining the results validates the qualitative analysis with statistically significant 
results for questions 1-3, 5, and 7 (see Table 3). To statistically examine the results, the 
Wilcoxon Rank Sum test was used as the data for each question do not follow a normal 
distribution, which is required for a t-test. Note that caution is warranted in interpreting the 
results of the Wilcoxon Rank Sum test because of the small sample size (n = 14).  
 
Teaching Technique Engagement 
Polls were used to examine students’ experiences with different teaching techniques, consisting 
of worked examples with sub-goals, live coding, pair programming, and presentation of good 
and bad examples. Figure 3 shows the questions asked in the polls. Similar to the surveys, a 
Lickert scale of 1-5 was used for each poll question. 
 



 
Figure 2. Histograms for student responses to the pre- and post-course survey questions.  
 

Table 3. Wilcoxon rank sum results used to compare pre- and post- survey question responses. 
Question Wilcoxon test statistic p-value 

1 41.5 0.003431 

2 58.5 0.02747 

3 39 0.002624 

4 77 0.1329 

5 30 0.0005434 

6 97 0.49 

7 46 0.004336 

 

Figure 3. Poll questions. 



Figure 4 shows the graphical results of each poll using histograms.  In trying to understand the 
student experience through this data, we can see clear preferences for good examples (question 
1) and worked examples with labeled subgoals (question 5).  Students appreciated using live 
coding (question 4) and authentic tasks (question 6) although felt less strongly about these 
approaches.  Bad examples (question 2) and pair programming (question 3) are distributed, 
indicating a less positive student experience with these techniques. 
 

 
Figure 4. Histograms for student responses to the poll questions. 

 
Discussion 
Examining the assessment results provides insights into how an environmental data science 
course can be taught and lessons learned from the experiment process. 
 
Analyzing Assessment Results 
This process examined how authentic tasks improve students’ confidence, and if intentional 
teaching techniques better engage students. 
 
The results show a clear utility to focusing on tasks with real world examples and data in 
improving student confidence with programming and data analysis. The results are inconclusive 
regarding student attitude towards these skills. Attitude improved when questioned directly 
although seeing the direct relevance of the work was not statistically significant. 
 
In examining the specific teaching techniques used (worked examples with sub-goals, live 
coding, pair programming, and presentation of good and bad examples), students were most 
engaged with the worked examples and good examples. Live coding also seemed to help 
although this had mixed experiences from the instructor standpoint as it appeared less effective 
for the students with slower coding skills. Other instructors report mixed results with live coding 
[13] although specific advice is available that could improve the experience [10]. Authentic tasks 
were also not as strongly rated; however, given the focus of the class was on authentic tasks, 
students may not have seen sufficient “inauthentic” tasks to reasonably assess the difference. Bad 
examples did not seem to help. This is an area for potential future exploration as perhaps the 
examples were not authentic enough or the students did not have sufficient understanding to see 
why the examples were bad. 
 



Finally, pair programming was less well rated by the students. This result is interesting and may 
suggest some additional research as, observationally, pair programming seemed to work quite 
well, and students seemed to enjoy it. There are some questions on whether informal pair 
creation or formal pair creation changes students’ experience as well as whether students who 
did not have a student to informally pair with rated the technique lower. More intentional and 
consistent use of pair programming could be done to better evaluate this method. 
 
Lessons Learned 
Overall, several techniques and decisions worked well and are suggested for others. The 
structure of the class to use a data science framework with real world data and detailed lecture 
examples with no textbook helped the course provide an authentic experience for students that 
improved their confidence. Repeatedly using the techniques of worked examples, scaffolded 
instruction, and good examples helped students build skills also. Constantly accessing and 
evaluating real data sets added authenticity to the experience. Ending the course with a final 
project that used all the techniques and skills learned to explore a topic of interest also helped 
with repetition, learning, and confidence. 
 
Several areas need further exploration to see if they should be included in future courses. As 
already mentioned, live coding had mixed experiences, bad examples were not appreciated, and 
pair programming had some mixed results as well. While class time was dedicated to helping the 
students efficiently set up R and RStudio at the beginning of the semester, additional efforts 
could be made create subfolders, install packages, and download initial data sets and script files 
for easy access and initiation into the course. This assistance would help students better structure 
their work and reduce the barriers for starting assignments. Additionally, ending the course with 
a last lecture on communicating and reporting the results of data analyses would better frame the 
end result of the work for the students and set them up for success in the final report. 
 
A key space for further improvement would be building a narrative around the locations where 
the data comes from to provide more context for the students. Much of the data are collected 
from key regions with interesting environmental and historical stories that could help students 
better connect to the data. One thought is to have short presentations on the sites that contain 
photos, statistics, historical facts, and summaries of current events.  
 
Conclusion 
This paper examined course techniques and structure to improve student confidence, skills, and 
engagement with programming and data science. This was guided by the work of [8] and others. 
Our efforts were assessed through student surveys and student polls. Based on this work, it 
appears that students can learn programming and develop self-efficacy given the right guidance 
and framework. Carefully curated course content is important, including the use of worked 
examples with labelled subgoals and templates for assignments. Authentic tasks are effective for 
engaging students. Interactive and collaborative teaching techniques such as pair programming 
and live coding can be helpful for engaging students although instructors should be mindful of 
how these are implemented. Future efforts will include building narratives around monitored 
sites. Future efforts will also include more detailed assessment and structuring of pair 
programming and the use of bad examples. 
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