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Introduction 

It is generally recognized that computer-based (or computer-enhanced) problem solving (CBPS) 

can be a very important or possibly the most important application of the computer in 

engineering education and practice. However, the penetration of CBPS in the various 

engineering disciplines has been disappointingly slow and of limited extent. (Kantor and Edgar
2
, 

Jones
3
) The mistaken premise that one software package is appropriate for all problem solving is 

possibly one of the major impediments to CBPS. There are selected engineering courses where 

the computer is used as a sophisticated calculator that can solve differential and implicit 

algebraic equations and also perform regressions on experimental data. In other cases, the 

graphical and the database management capabilities of the software are important.  Still other 

courses require considerable programming abilities.  

We have long advocated that the most educational benefit can be gained by the integration of 

several software packages throughout the curriculum (Shacham and Cutlip
4
). There is a need for 

a numerical problem solver that accepts the model equations close to their mathematical forms 

and provides their numerical solution with very minimal user intervention. Spreadsheets are used 

widely for organization and presentation of information in tabular and graphical forms and for 

database management with related operations. Software packages that support programming 

(such as MATLAB, for example) are needed to implement algorithms are required in advanced 

programming and numerical analysis courses. 
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In our experience, most students find it rather difficult to convert mathematical models of even 

medium complexity to the format required by spreadsheets and by programming languages. This 

initial difficulty may prevent them from using spreadsheets and programming languages in an 

advanced level. This barrier to the extensive use of CBPS can be minimized if the software can 

be utilized for converting the equations from their mathematical form into the format required by 

spreadsheets and programming languages.   

In this paper we will describe a numerical software package called POLYMATH
A
 that we have 

developed over the last 20 years that accepts the equations close to their mathematical forms and 

provides their numerical solutions.  The latest version of this software also automatically outputs 

the equations in the format acceptable to a spreadsheet program, Excel
B
, and a software package 

that supports programming, MATLAB
C
. This automated generation of completely operational 

Excel and MATLAB programs greatly enhances the teaching of computing and numerical while 

simultaneously introducing the students to widely used software packages. The potential 

application of POLYMATH with these recently developed capabilities will be demonstrated by 

several examples in engineering education. 

Numerical Methods Courses 

Courses involving the fundamentals of "Numerical Methods" are taught in most engineering 

disciplines. These courses can consider the fundamental algorithms involved in numerical 

problem solving and can also provide engineering students with many good examples that 

illustrate the use of several software packages for effective CBPS. The examples provided in 

most textbooks of numerical methods are often unrelated to the problems that have to be solved 

in the student’s particular field.  The use of realistic problems in a student’s engineering 

discipline can increase their motivation in numerical problem solving and develop his/her ability 

to select the appropriate numerical method to be used with the particular problem under 

consideration. 

In this paper we will demonstrate, using two examples, the potential benefits of the use of the 

POLYMATH package to code and debug the mathematical model of the problem in hand. The 

POLYMATH model can then be easily converted to an Excel worksheet or to a MATLAB 

function. These packages can then be used to carry out the repetitive and/or iterative calculations 

required by the particular numerical method. 

Example 1 - Calculation of the Flow Rate in a Pipeline Using Successive Substitution 

This example is based on Problem 5.10 presented by Cutlip and Shacham
1
. The detailed problem 

statement is shown in Appendix A. The problem involves calculation of flow velocity and flow 

rate in a pipeline configuration for a large number of combinations of pipe lengths and diameters. 

The results should be presented in tabular and graphical forms. The solution for one set of pipe 

diameter and length values involves solution of a nonlinear equation, the general mechanical 

energy balance on an incompressible fluid, where the friction factor is function of the Reynold's 

                                                 

A POLYMATH is copyrighted by M. Shacham, M. B. Cutlip and M. Elly (http://www.polymath-software.com/ )  
B Excel is a trademark of Microsoft Corporation (http://www.microsoft.com) 
C MATLAB is a trademark of The MathWorks, Inc. (http://www.mathworks.com/) 
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number (thus the flow velocity). The successive substitution method has long been used for 

solving this type of problems (even when graphical solution techniques were used), and it is 

known that this technique converges very fast for flow velocity calculations. The successive 

substitution method can be conveniently programmed with Excel, but the direct input of the 

model equations into Excel can be a tedious and error-prone process. A better approach for 

students is to first enter the equations into POLYMATH that requires minimal changes in the 

naming of the variables, solve the equations for one sets of parameter values, and then compare 

the results with the solution provided in the problem statement. After this is completed, an option 

within POLYMATH can be used to convert the set of equations into a spreadsheet within Excel 

that can immediately be used to also obtain a problem solution. 

The equations, as entered into the POLYMATH program, are shown in Figure 1. Students find 

the "user friendly" features of POLYMATH very helpful while entering the equations: The 

notation used in the equation entry is almost the same as in the problem definition (except that no 

Greek characters can be used). POLYMATH issues warnings for undefined variables so that 

errors such as using the letter o in the variable name (like in eoD) in one equation and the 

number 0 in another equation can be easily detected. The needed equations can be entered in the 

same order as they appear in the problem definition even if the calculation order must be 

different since POLYMATH reorders the equations when the calculations are made.  For 

example, the necessary calculation for the friction factor, fF, first involves i/D and then Reynolds 

number, Re. However POLYMATH allows direct entry of the equations in the same order as 

they are defined in the problem statement. 

Common mistakes in entering the model equations typically involve inconsistency in the units 

used (i.e. inches instead of feet), wrong sign of the pressure or elevation difference, and 

inappropriate use of parenthesis in Equations (A-1) and (A-4). POLYMATH enables much 

easier detection of errors in the model equations because the model debugging stage is clearly 

separated from the numerical solution stage. 

Figure 1 - POLYMATH Equation Entry for Example 1 
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After the correct solution as given in the problem statement is obtained, the model equation set 

can be converted to an Excel worksheet using a single command within POLYMATH. Part of 

the Excel worksheet generated is shown in Figure 2 where the variable cell calculations are 

indicated. 

  

Figure 2 - POLYMATH Equations Converted to Excel Formulas for Example 1 

The variable names are translated to cell addresses, intrinsic function names are changed as 

necessary, and the syntax of the if statement is changed. The equations are rearranged in a form 

that appropriate for solving the equation using the goal seek or solver tools available within 

Excel. The complete worksheet with the solution obtained using goal seek is shown in Figure 3.  

Figure 3 - Excel Worksheet with Numerical Results and Documentation for Example 1  

The numerical results are identical to those obtained by POLYMATH, and thus the correctness 

of the Excel solution has been verified. The variable names in column C, the POLYMATH 

equations in column E, and the variable descriptions in column F provide complete 

documentation for the Excel formulas in column C.  
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The successive substitution method can be implemented by revising the equations that are 

functions of the unknown flow velocity v and adding Equation (A-6) for estimating the error in 

the current value of vi as shown below. 

 

Arranging the variables in consecutive columns, copying and pasting them in consecutive rows 

and substituting vi+1 in the cell that contains vi starting iteration No. 1 yields the desired solution 

as obtained by the successive substitution method (see Table 1). 

Table 1 - Successive Substitution Iterations for Example 1  

Iteration. No. i vi Re fF vi+1 ii = |vi+1-vi| q 

1 10 545193.3 0.003892 11.58185 1.581854 1559.383

2 11.58185 631434.9 0.003849 11.64971 0.067853 1806.055

3 11.64971 635134.2 0.003847 11.65229 0.002578 1816.636

4 11.65229 635274.8 0.003847 11.65238 9.75E-05 1817.038

5 11.65238 635280.1 0.003847 11.65239 3.69E-06 1817.053

 

After the correct solution has been obtained for one set of pipe length and diameter values the 

"Two Input Table" option of Excel can be conveniently used for carrying out all the calculations 

that required in part (b) of the problem statement in Appendix A. The plot of flow velocity for all 

combinations of pipe length and diameter is shown in Figure 4. 
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Figure 4 - Flow Velocity versus Pipe Length and Diameter for Example 1 

Example 2 - Flow Distribution in a Pipeline Network Solved by Broyden’s Method 

This example is based on Problem 5.11 presented by Cutlip and Shacham
1
. The detailed problem 

statement is shown in Appendix B. The problem involves calculation of flow rates and pressure 

drops in a pipeline network that includes seven interconnected pipe segments. The problem can 

be brought into a form of seven algebraic equations (where three of them are nonlinear) with 

seven unknown pipe-segment flow rates. The use of Broyden's Quasi-Newton method for this 

type of problems is attractive because it has super-linear convergence and it does not require 

calculations of the matrix of partial derivatives. The various matrix-matrix and matrix-vector 

multiplications required by this method can be easily carried out when MATLAB is used for 

implementation. Students may find this method difficult to program if another programming 

package is used that does not support algebraic expressions that contain matrices and matrix 

operations. 

In this example it is very important to verify that the mathematical model is correct and has a 

solution before attaching to it the numerical solution technique, because the Broyden’s' method 

may not converge to the solution even if the problem does have a solution. Some potential causes 

for no convergence will be demonstrated in this example. 

The model equations, as entered into the POLYMATH nonlinear algebraic equation solver 

program are shown in p. 188 of Cutlip and Shacham
1
. The problem can be solved with 

POLYMATH when using the initial estimates shown in the problem statement without any 

difficulties. The POLYMATH equations can be easily converted to a MATLAB function. We 

have used an automatic conversion routine to do that but the conversion can be done easily by 

hand also. The MATLAB function that was obtained by the conversion routine and edited in 

order to bring it to a more compact form is shown in Figure 5. 
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 Figure 5 - MATLAB Function Representing the Pipeline Network of Example 2 

 

The main program for solving the pipeline network problems using Broyden's method is shown 

in Figure 6. Note that only the computational commands are shown, the input output commands 

were removed for brevity. 

 

 

Figure 6 - MATLAB Main Program for Solving Example 2 Using Broyden's Method 
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Note that Broyden's method, as implemented in Figure 6 diverges from the initial estimates 

specified in Appendix B. One reason for that is the order of magnitude differences between the 

functions associated with Equation (B-3) and those associated with Equation (B-4). The 

Equations (B-3) are comprised of terms of the order of 0.1 while the Equations (B-4) are 

comprise of terms of the order of 10
6
. 

The equations can be rescaled by dividing the Equations (B-3) by the largest kij associated with 

the particular equation. This rescaling was already carried out in the function shown in Figure 5. 

However, Broyden’s method diverges even after rescaling the equations. To validate the solution 

technique an initial estimate, closer to the solution is selected, based on the solution obtained by 

POLYMATH. From this initial estimate Broyden's method converges to the correct solution 

shown in Table 2. But even when starting from an initial estimate close to the solution the 

convergence of Broyden's method is non-monotonic as can be seen in Figure 7. This Figure 

shows the logarithm of the error norm (defined in Appendix B) as function of the iteration 

number. The error norm gets reduced for several iterations and increases once again until, 

finally, gets close enough to the solution to achieve monotonic convergence. Sophisticated 

nonlinear equation solver packages use a one-dimensional search in order to prevent the increase 

of the error norm and this is a good example to demonstrate the need for such modification of the 

solution algorithm.    

Table 2 - Initial Estimates and Solutions for Pipeline Network Flow-rates  

 

Initial 

Estimate Solution 

q01 (m
3
/s) 0.1 0.098134 

q12 (m
3
/s) 0.07 0.06482 

q13 (m
3
/s) 0.04 0.033314 

q24 (m
3
/s) 0.05 0.049372 

q23 (m
3
/s) 0.02 0.015449 

q34 (m
3
/s) 0.05 0.048763 

q45(m
3
/s) 0.1 0.098135 
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Figure 7 - Convergence Pattern of the Broyden's Method for Example 2 

 

Conclusions 

We have demonstrated, using two practical examples from the fluid mechanics field several 

benefits of the use of a number of software packages in engineering problem solving. When 

teaching numerical methods the preparation, coding and debugging of the mathematical model 

can be separated from the coding and debugging of the solution algorithm by using a software 

package that takes care of the technical details of the numerical solution. This enables solving 

complex, realistic problems increasing the students' motivation to learn CPBS techniques.  

Once a correct, verified solution has been obtained for a particular model a different software 

package, more appropriate for coding the numerical solution algorithm can be used. The 

existence of a solution for the problem can alleviate considerably the solution algorithm and can 

help to identify weak points of the basic algorithm such as the need to rescale the functions and 

variables, start the iterations from points close to the solution or carry out one dimensional search 

for minimum. 

Example 1, in slightly modified form was presented as a final exam question to the students of a 

"Process Modeling and Numerical Methods" course in the Chemical Engineering Department of 

the Ben-Gurion University. Using two software packages (POLYMATH and MATLAB) for 

solution most of the students managed to solve correctly the problem in two hours.  This clearly 

demonstrates the benefits of the use of several software packages simultaneously to enable 

solving realistic problems by computer in reasonable timeframes.  
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Appendix A 

Problem Statement for Example 1 

Calculation of the Flow Rate in a Pipeline 

The Figure below shows a pipeline which delivers water at constant temperature T = 60 °F from 

point 1 where the pressure is p1 = 150 psig and the elevation is z1 = 0 ft to point 2 where the 

pressure is atmospheric and the elevation is z2 = 300 ft.  

 

(a) Calculate the flow rate q (in gal/min) for a pipeline with effective length of L = 1000 ft 

and made of nominal 8-inch diameter schedule 40 commercial steel pipe. (Solution: v =  

11.65 ft/s, q = 1817 gpm) 

(b) Calculate the flow velocity and flow rate for pipelines with effective length of L = 500, 

1000, … 10000 ft and made of nominal 4,5,6 and 8-inch schedule 40 commercial steel 

pipe. Use the successive substitution method for solving the equations for the various 

cases and present the results in tabular form. Prepare plots of flow velocity versus D and 

L and flow rate versus D and L.  

Equations and numerical data 

The general mechanical energy balance on an incompressible liquid that applicable to this case is 

the following 

02
2

1
2

2 ?-
F

-F-/
D

LvfPg
zgv Fc

t
                       (A-1) 
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where v is the flow velocity in ft/s, g is the acceleration of gravity given by g = 32.174 ft/s
2
, 〉z = 

z2-z1 is the difference in elevation (ft), gc is a conversion factor (in English units gc =32.174 

ft·lbm/lbf·s
2
), 〉P = P2-P1 is the difference in pressure lbm/ft

2
), と is the fluid density (for water at 

T = 60 °F,  と = 62.3 lbm/ft
3 

), fF is the Fanning friction factor, L is the length of the pipe (ft) and D 

is the inside diameter of the pipe (ft). To use the Successive Substitution method equation (A-1) 

should be rewritten: 

D

Lf

Pg
zg

v
F

c

25.0 /

F
-F

?
t

                       (A-2) 

The equation used for calculating the Fanning friction factor depends on the flow regime. The 

flow regime is characterized by the Reynold's number Re. The Reynold's number is a 

dimensionless number Re= vとD/µ where µ is the viscosity (for water at T = 60 °F, µ = 0.76×10
-3

 

lbm/ft·s). For laminar flow (Re < 2100) the Fanning friction factor can be calculated from the 

equation 

Re
f F

16
?                       (A-3) 

 For turbulent flow (Re > 2100) the Shacham
D
 equation can be used. 

2
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                     (A-4) 

where i/D is the surface roughness of the pipe (i = 0.00015 ft for commercial steel pipes). 

The flow velocity in the pipeline can be converted to flow rate by multiplying it by the cross 

section of the pipe, thus q = vヾD
2
/4 (ft

3
/s). The inside diameter (D) of commercial steel pipes can 

be found, for example, in Table D-5 of the book by Cutlip and Shacham
 
(1999). The iteration 

function of the successive substitution method for calculation of the flow velocity is 

4,1,0)(1 ??- ivFv ii                                (A-5) 

where i is the iteration number, F is the function in the right side of Equation (A-2) and v0 is an 

initial estimate for the flow velocity (use v0 = 10 ft/s ). Equation (A-6) provides an error estimate 

at iteration i: 

||ˆ
1-/? iii vvg                                                   (A-6) 

The iterations can be stopped when . 510ˆ />ig
                                                 

D Shacham, M. Ind. Eng. Chem. Fund., 19, 228-229(1980) 
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Appendix B 

Problem Statement for Example 2 

Flow Distribution in a Pipeline Network 

Water at 25 °C is flowing in the pipeline network given in Figure B-1. The pressure at the exit of 

the pump is 15 bar (15 ×10
5
 Pa) above atmospheric, and the water is discharged at atmospheric 

pressure at the end of the pipeline. All the pipes are 6-inch schedule 40 steel with an inside 

diameter of  0.154 m. The equivalent lengths of the pipes connecting different nodes are the 

following: L01 = 100 m, L12 = L23 = L45 = 300 m, and L13 = L24 = L34 = 1200 m. 

 

a) Use POLYMATH to calculate all the flow rates and pressures at nodes 1, 2, 3, and 4 

for the pipeline network shown in the Figure. The Fanning friction factor can be 

assumed to be constant at fF = 0.005 for all pipelines. The initial estimates for all the 

volumetric flow rates can be set at 0.1 m
3
/s. 

b) Use Broyden's Quasi-Newton method (programmed with MATLAB) to solve the 

system of equations obtained in part (a). 

Equations and data 

For the solution of this problem it is convenient to express the pressure drop from node i to node 

j as 

2)( ijijij qkP ?F                                                        (B-1) 

where  is the pressure drop and qijPF ij is the volumetric flow rate between nodes i and j. The kij 

terms in Equation (B-1) are related to the Fanning friction factors and average fluid velocities. 

52

32

D

Lf
k
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ij r
t

?                                                   (B-2) 
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There are two relationships that govern the steady-state flow rate in pipeline networks. First, the 

algebraic sum of the flow rates at each node must be zero. Second, the algebraic sum of all 

pressure drops in a closed loop must be zero.  

The flow rate summation equations for nodes 1, 2, 3 and 4 are the following: 

0

0

0

0

453424

341323

232412

131201

?/-
?/-
?//
?//

qqq

qqq

qqq

qqq

                                                              (B-3) 

The pressure drop summation equations on Loops I, II and III (see Figure B-1) are respectively  

0

0

0

243423

122313

45241201

?F/F-F
?F/F/F

?F-F-F-F-F

PPP

PPP

PPPPP PUMP

                                                    (B-4) 

The pressure drops can be expressed as functions of qij using Equation (B-1). This substitution 

leads to seven equations with seven unknown flow rates.  

The iteration function of Broyden's quasi-Newton method
E
 for solving systems of nonlinear 

algebraic equations is 

4,1,0)(1 ?/?- kkkkk xfHxx                                         (B-5) 

where x is an n vector of variables, f is an n vectors of functions and Hk is the k
th

 estimate for the 

inversed Jacobian matrix (matrix of partial derivatives). The identity matrix I is often used as 

initial estimate for the inversed Jacobian matrix H0. This matrix is updated in iteration k using 

the equation  

kk

T

k

k

T

kkkk

kk
yHp

HppyH
HH

.)(
. 1

/
/?-                                                           (B-6) 

where p   and kkk xx /? -1 )()( 1 kkk xfxfy /? - . 

The Euclidean norm of  pk can be used as error estimate. Thus ||||~
kk p?g . The iterations can be 

stopped when . 510ˆ />kg

                                                 

E Broyden, C. G. Mathematics of Computation, 19, 577-593(1965) 
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