
3420

Enhancing Computer-Based Problem Solving Skills

with a Combination of Software Packages

Mordechai Shacham

Dept. of Chemical Engineering, Ben Gurion University of the Negev

Beer-Sheva 84105, Israel

e-mail: shacham@bgumail.bgu.ac.il

Michael B. Cutlip

Dept. of Chemical Engineering, University of Connecticut

Storrs, CT 06269, USA

e-mail: michael.cutlip@uconn.edu

Introduction

It is generally recognized that computer-based (or computer-enhanced) problem solving (CBPS)

can be a very important or possibly the most important application of the computer in

engineering education and practice. However, the penetration of CBPS in the various

engineering disciplines has been disappointingly slow and of limited extent. (Kantor and Edgar
2
,

Jones
3
) The mistaken premise that one software package is appropriate for all problem solving is

possibly one of the major impediments to CBPS. There are selected engineering courses where

the computer is used as a sophisticated calculator that can solve differential and implicit

algebraic equations and also perform regressions on experimental data. In other cases, the

graphical and the database management capabilities of the software are important. Still other

courses require considerable programming abilities.

We have long advocated that the most educational benefit can be gained by the integration of

several software packages throughout the curriculum (Shacham and Cutlip
4
). There is a need for

a numerical problem solver that accepts the model equations close to their mathematical forms

and provides their numerical solution with very minimal user intervention. Spreadsheets are used

widely for organization and presentation of information in tabular and graphical forms and for

database management with related operations. Software packages that support programming

(such as MATLAB, for example) are needed to implement algorithms are required in advanced

programming and numerical analysis courses.

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.1

In our experience, most students find it rather difficult to convert mathematical models of even

medium complexity to the format required by spreadsheets and by programming languages. This

initial difficulty may prevent them from using spreadsheets and programming languages in an

advanced level. This barrier to the extensive use of CBPS can be minimized if the software can

be utilized for converting the equations from their mathematical form into the format required by

spreadsheets and programming languages.

In this paper we will describe a numerical software package called POLYMATH
A
 that we have

developed over the last 20 years that accepts the equations close to their mathematical forms and

provides their numerical solutions. The latest version of this software also automatically outputs

the equations in the format acceptable to a spreadsheet program, Excel
B
, and a software package

that supports programming, MATLAB
C
. This automated generation of completely operational

Excel and MATLAB programs greatly enhances the teaching of computing and numerical while

simultaneously introducing the students to widely used software packages. The potential

application of POLYMATH with these recently developed capabilities will be demonstrated by

several examples in engineering education.

Numerical Methods Courses

Courses involving the fundamentals of "Numerical Methods" are taught in most engineering

disciplines. These courses can consider the fundamental algorithms involved in numerical

problem solving and can also provide engineering students with many good examples that

illustrate the use of several software packages for effective CBPS. The examples provided in

most textbooks of numerical methods are often unrelated to the problems that have to be solved

in the student’s particular field. The use of realistic problems in a student’s engineering

discipline can increase their motivation in numerical problem solving and develop his/her ability

to select the appropriate numerical method to be used with the particular problem under

consideration.

In this paper we will demonstrate, using two examples, the potential benefits of the use of the

POLYMATH package to code and debug the mathematical model of the problem in hand. The

POLYMATH model can then be easily converted to an Excel worksheet or to a MATLAB

function. These packages can then be used to carry out the repetitive and/or iterative calculations

required by the particular numerical method.

Example 1 - Calculation of the Flow Rate in a Pipeline Using Successive Substitution

This example is based on Problem 5.10 presented by Cutlip and Shacham
1
. The detailed problem

statement is shown in Appendix A. The problem involves calculation of flow velocity and flow

rate in a pipeline configuration for a large number of combinations of pipe lengths and diameters.

The results should be presented in tabular and graphical forms. The solution for one set of pipe

diameter and length values involves solution of a nonlinear equation, the general mechanical

energy balance on an incompressible fluid, where the friction factor is function of the Reynold's

A POLYMATH is copyrighted by M. Shacham, M. B. Cutlip and M. Elly (http://www.polymath-software.com/)
B Excel is a trademark of Microsoft Corporation (http://www.microsoft.com)
C MATLAB is a trademark of The MathWorks, Inc. (http://www.mathworks.com/)

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.2

number (thus the flow velocity). The successive substitution method has long been used for

solving this type of problems (even when graphical solution techniques were used), and it is

known that this technique converges very fast for flow velocity calculations. The successive

substitution method can be conveniently programmed with Excel, but the direct input of the

model equations into Excel can be a tedious and error-prone process. A better approach for

students is to first enter the equations into POLYMATH that requires minimal changes in the

naming of the variables, solve the equations for one sets of parameter values, and then compare

the results with the solution provided in the problem statement. After this is completed, an option

within POLYMATH can be used to convert the set of equations into a spreadsheet within Excel

that can immediately be used to also obtain a problem solution.

The equations, as entered into the POLYMATH program, are shown in Figure 1. Students find

the "user friendly" features of POLYMATH very helpful while entering the equations: The

notation used in the equation entry is almost the same as in the problem definition (except that no

Greek characters can be used). POLYMATH issues warnings for undefined variables so that

errors such as using the letter o in the variable name (like in eoD) in one equation and the

number 0 in another equation can be easily detected. The needed equations can be entered in the

same order as they appear in the problem definition even if the calculation order must be

different since POLYMATH reorders the equations when the calculations are made. For

example, the necessary calculation for the friction factor, fF, first involves i/D and then Reynolds

number, Re. However POLYMATH allows direct entry of the equations in the same order as

they are defined in the problem statement.

Common mistakes in entering the model equations typically involve inconsistency in the units

used (i.e. inches instead of feet), wrong sign of the pressure or elevation difference, and

inappropriate use of parenthesis in Equations (A-1) and (A-4). POLYMATH enables much

easier detection of errors in the model equations because the model debugging stage is clearly

separated from the numerical solution stage.

Figure 1 - POLYMATH Equation Entry for Example 1

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.3

After the correct solution as given in the problem statement is obtained, the model equation set

can be converted to an Excel worksheet using a single command within POLYMATH. Part of

the Excel worksheet generated is shown in Figure 2 where the variable cell calculations are

indicated.

Figure 2 - POLYMATH Equations Converted to Excel Formulas for Example 1

The variable names are translated to cell addresses, intrinsic function names are changed as

necessary, and the syntax of the if statement is changed. The equations are rearranged in a form

that appropriate for solving the equation using the goal seek or solver tools available within

Excel. The complete worksheet with the solution obtained using goal seek is shown in Figure 3.

Figure 3 - Excel Worksheet with Numerical Results and Documentation for Example 1

The numerical results are identical to those obtained by POLYMATH, and thus the correctness

of the Excel solution has been verified. The variable names in column C, the POLYMATH

equations in column E, and the variable descriptions in column F provide complete

documentation for the Excel formulas in column C.

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.4

The successive substitution method can be implemented by revising the equations that are

functions of the unknown flow velocity v and adding Equation (A-6) for estimating the error in

the current value of vi as shown below.

Arranging the variables in consecutive columns, copying and pasting them in consecutive rows

and substituting vi+1 in the cell that contains vi starting iteration No. 1 yields the desired solution

as obtained by the successive substitution method (see Table 1).

Table 1 - Successive Substitution Iterations for Example 1

Iteration. No. i vi Re fF vi+1 ii = |vi+1-vi| q

1 10 545193.3 0.003892 11.58185 1.581854 1559.383

2 11.58185 631434.9 0.003849 11.64971 0.067853 1806.055

3 11.64971 635134.2 0.003847 11.65229 0.002578 1816.636

4 11.65229 635274.8 0.003847 11.65238 9.75E-05 1817.038

5 11.65238 635280.1 0.003847 11.65239 3.69E-06 1817.053

After the correct solution has been obtained for one set of pipe length and diameter values the

"Two Input Table" option of Excel can be conveniently used for carrying out all the calculations

that required in part (b) of the problem statement in Appendix A. The plot of flow velocity for all

combinations of pipe length and diameter is shown in Figure 4.

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.5

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

0 2000 4000 6000 8000 10000

Pipe lenght (ft)

V
e
lo

c
it

y
 (

ft
/s

)

D=4"

D=5"

D=6"

D=8"

Figure 4 - Flow Velocity versus Pipe Length and Diameter for Example 1

Example 2 - Flow Distribution in a Pipeline Network Solved by Broyden’s Method

This example is based on Problem 5.11 presented by Cutlip and Shacham
1
. The detailed problem

statement is shown in Appendix B. The problem involves calculation of flow rates and pressure

drops in a pipeline network that includes seven interconnected pipe segments. The problem can

be brought into a form of seven algebraic equations (where three of them are nonlinear) with

seven unknown pipe-segment flow rates. The use of Broyden's Quasi-Newton method for this

type of problems is attractive because it has super-linear convergence and it does not require

calculations of the matrix of partial derivatives. The various matrix-matrix and matrix-vector

multiplications required by this method can be easily carried out when MATLAB is used for

implementation. Students may find this method difficult to program if another programming

package is used that does not support algebraic expressions that contain matrices and matrix

operations.

In this example it is very important to verify that the mathematical model is correct and has a

solution before attaching to it the numerical solution technique, because the Broyden’s' method

may not converge to the solution even if the problem does have a solution. Some potential causes

for no convergence will be demonstrated in this example.

The model equations, as entered into the POLYMATH nonlinear algebraic equation solver

program are shown in p. 188 of Cutlip and Shacham
1
. The problem can be solved with

POLYMATH when using the initial estimates shown in the problem statement without any

difficulties. The POLYMATH equations can be easily converted to a MATLAB function. We

have used an automatic conversion routine to do that but the conversion can be done easily by

hand also. The MATLAB function that was obtained by the conversion routine and edited in

order to bring it to a more compact form is shown in Figure 5.

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.6

 Figure 5 - MATLAB Function Representing the Pipeline Network of Example 2

The main program for solving the pipeline network problems using Broyden's method is shown

in Figure 6. Note that only the computational commands are shown, the input output commands

were removed for brevity.

Figure 6 - MATLAB Main Program for Solving Example 2 Using Broyden's Method

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.7

Note that Broyden's method, as implemented in Figure 6 diverges from the initial estimates

specified in Appendix B. One reason for that is the order of magnitude differences between the

functions associated with Equation (B-3) and those associated with Equation (B-4). The

Equations (B-3) are comprised of terms of the order of 0.1 while the Equations (B-4) are

comprise of terms of the order of 10
6
.

The equations can be rescaled by dividing the Equations (B-3) by the largest kij associated with

the particular equation. This rescaling was already carried out in the function shown in Figure 5.

However, Broyden’s method diverges even after rescaling the equations. To validate the solution

technique an initial estimate, closer to the solution is selected, based on the solution obtained by

POLYMATH. From this initial estimate Broyden's method converges to the correct solution

shown in Table 2. But even when starting from an initial estimate close to the solution the

convergence of Broyden's method is non-monotonic as can be seen in Figure 7. This Figure

shows the logarithm of the error norm (defined in Appendix B) as function of the iteration

number. The error norm gets reduced for several iterations and increases once again until,

finally, gets close enough to the solution to achieve monotonic convergence. Sophisticated

nonlinear equation solver packages use a one-dimensional search in order to prevent the increase

of the error norm and this is a good example to demonstrate the need for such modification of the

solution algorithm.

Table 2 - Initial Estimates and Solutions for Pipeline Network Flow-rates

Initial

Estimate Solution

q01 (m
3
/s) 0.1 0.098134

q12 (m
3
/s) 0.07 0.06482

q13 (m
3
/s) 0.04 0.033314

q24 (m
3
/s) 0.05 0.049372

q23 (m
3
/s) 0.02 0.015449

q34 (m
3
/s) 0.05 0.048763

q45(m
3
/s) 0.1 0.098135

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.8

-7

-6

-5

-4

-3

-2

-1

0

0 5 10 15 20 25

Iteration Number (k)

lo
g

a
ri

th
m

 o
f
gk

Figure 7 - Convergence Pattern of the Broyden's Method for Example 2

Conclusions

We have demonstrated, using two practical examples from the fluid mechanics field several

benefits of the use of a number of software packages in engineering problem solving. When

teaching numerical methods the preparation, coding and debugging of the mathematical model

can be separated from the coding and debugging of the solution algorithm by using a software

package that takes care of the technical details of the numerical solution. This enables solving

complex, realistic problems increasing the students' motivation to learn CPBS techniques.

Once a correct, verified solution has been obtained for a particular model a different software

package, more appropriate for coding the numerical solution algorithm can be used. The

existence of a solution for the problem can alleviate considerably the solution algorithm and can

help to identify weak points of the basic algorithm such as the need to rescale the functions and

variables, start the iterations from points close to the solution or carry out one dimensional search

for minimum.

Example 1, in slightly modified form was presented as a final exam question to the students of a

"Process Modeling and Numerical Methods" course in the Chemical Engineering Department of

the Ben-Gurion University. Using two software packages (POLYMATH and MATLAB) for

solution most of the students managed to solve correctly the problem in two hours. This clearly

demonstrates the benefits of the use of several software packages simultaneously to enable

solving realistic problems by computer in reasonable timeframes.

Bibliography

(1) Cutlip, M. B. and Shacham, M., Problem Solving In Chemical Engineering with Numerical

Methods, Prentice-Hall, Upper Saddle River, New-Jersey, 1999.

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.9

(2) Jones J. B., "The Non-Use of Computers in Undergraduate Engineering Science Courses",

Journal of Engineering Education, Vol. 88, 1998, pp. 11-14.

(3) Kantor, J. C. and T. Edgar, "Computing Skills in the Chemical Engineering Curriculum", pp.

9-20 in Carnahan, B. (Ed), Computers in Chemical Engineering Education, CACHE, Austin,

Texas, 1996.

(4) Shacham, M. and M.B. Cutlip, “A Comparison of Six Numerical Software Packages for

Educational Use in the Chemical Engineering Curriculum”, Computers in Education Journal,

Vol. IX, No. 3, 1999, pp. 9-15

Appendix A

Problem Statement for Example 1

Calculation of the Flow Rate in a Pipeline

The Figure below shows a pipeline which delivers water at constant temperature T = 60 °F from

point 1 where the pressure is p1 = 150 psig and the elevation is z1 = 0 ft to point 2 where the

pressure is atmospheric and the elevation is z2 = 300 ft.

(a) Calculate the flow rate q (in gal/min) for a pipeline with effective length of L = 1000 ft

and made of nominal 8-inch diameter schedule 40 commercial steel pipe. (Solution: v =

11.65 ft/s, q = 1817 gpm)

(b) Calculate the flow velocity and flow rate for pipelines with effective length of L = 500,

1000, … 10000 ft and made of nominal 4,5,6 and 8-inch schedule 40 commercial steel

pipe. Use the successive substitution method for solving the equations for the various

cases and present the results in tabular form. Prepare plots of flow velocity versus D and

L and flow rate versus D and L.

Equations and numerical data

The general mechanical energy balance on an incompressible liquid that applicable to this case is

the following

02
2

1
2

2 ?-
F

-F-/
D

LvfPg
zgv Fc

t
 (A-1)

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.10

where v is the flow velocity in ft/s, g is the acceleration of gravity given by g = 32.174 ft/s
2
, 〉z =

z2-z1 is the difference in elevation (ft), gc is a conversion factor (in English units gc =32.174

ft·lbm/lbf·s
2
), 〉P = P2-P1 is the difference in pressure lbm/ft

2
), と is the fluid density (for water at

T = 60 °F, と = 62.3 lbm/ft
3

), fF is the Fanning friction factor, L is the length of the pipe (ft) and D

is the inside diameter of the pipe (ft). To use the Successive Substitution method equation (A-1)

should be rewritten:

D

Lf

Pg
zg

v
F

c

25.0 /

F
-F

?
t

 (A-2)

The equation used for calculating the Fanning friction factor depends on the flow regime. The

flow regime is characterized by the Reynold's number Re. The Reynold's number is a

dimensionless number Re= vとD/µ where µ is the viscosity (for water at T = 60 °F, µ = 0.76×10
-3

lbm/ft·s). For laminar flow (Re < 2100) the Fanning friction factor can be calculated from the

equation

Re
f F

16
? (A-3)

 For turbulent flow (Re > 2100) the Shacham
D
 equation can be used.

2

5.14

7.3

/
log

02.5

7.3

/
log16

1

Ý
Ü
Û

Ì
Ë
Ê

Ù
Ú

×
È
É

Ç
Õ
Ö
Ô

Ä
Å
Ã -/

?

Re

D

Re

D
f F

gg
 (A-4)

where i/D is the surface roughness of the pipe (i = 0.00015 ft for commercial steel pipes).

The flow velocity in the pipeline can be converted to flow rate by multiplying it by the cross

section of the pipe, thus q = vヾD
2
/4 (ft

3
/s). The inside diameter (D) of commercial steel pipes can

be found, for example, in Table D-5 of the book by Cutlip and Shacham

(1999). The iteration

function of the successive substitution method for calculation of the flow velocity is

4,1,0)(1 ??- ivFv ii (A-5)

where i is the iteration number, F is the function in the right side of Equation (A-2) and v0 is an

initial estimate for the flow velocity (use v0 = 10 ft/s). Equation (A-6) provides an error estimate

at iteration i:

||ˆ
1-/? iii vvg (A-6)

The iterations can be stopped when . 510ˆ />ig

D Shacham, M. Ind. Eng. Chem. Fund., 19, 228-229(1980)

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.11

Appendix B

Problem Statement for Example 2

Flow Distribution in a Pipeline Network

Water at 25 °C is flowing in the pipeline network given in Figure B-1. The pressure at the exit of

the pump is 15 bar (15 ×10
5
 Pa) above atmospheric, and the water is discharged at atmospheric

pressure at the end of the pipeline. All the pipes are 6-inch schedule 40 steel with an inside

diameter of 0.154 m. The equivalent lengths of the pipes connecting different nodes are the

following: L01 = 100 m, L12 = L23 = L45 = 300 m, and L13 = L24 = L34 = 1200 m.

a) Use POLYMATH to calculate all the flow rates and pressures at nodes 1, 2, 3, and 4

for the pipeline network shown in the Figure. The Fanning friction factor can be

assumed to be constant at fF = 0.005 for all pipelines. The initial estimates for all the

volumetric flow rates can be set at 0.1 m
3
/s.

b) Use Broyden's Quasi-Newton method (programmed with MATLAB) to solve the

system of equations obtained in part (a).

Equations and data

For the solution of this problem it is convenient to express the pressure drop from node i to node

j as

2)(ijijij qkP ?F (B-1)

where is the pressure drop and qijPF ij is the volumetric flow rate between nodes i and j. The kij

terms in Equation (B-1) are related to the Fanning friction factors and average fluid velocities.

52

32

D

Lf
k

ijF

ij r
t

? (B-2)

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.12

There are two relationships that govern the steady-state flow rate in pipeline networks. First, the

algebraic sum of the flow rates at each node must be zero. Second, the algebraic sum of all

pressure drops in a closed loop must be zero.

The flow rate summation equations for nodes 1, 2, 3 and 4 are the following:

0

0

0

0

453424

341323

232412

131201

?/-
?/-
?//
?//

qqq

qqq

qqq

qqq

 (B-3)

The pressure drop summation equations on Loops I, II and III (see Figure B-1) are respectively

0

0

0

243423

122313

45241201

?F/F-F
?F/F/F

?F-F-F-F-F

PPP

PPP

PPPPP PUMP

 (B-4)

The pressure drops can be expressed as functions of qij using Equation (B-1). This substitution

leads to seven equations with seven unknown flow rates.

The iteration function of Broyden's quasi-Newton method
E
 for solving systems of nonlinear

algebraic equations is

4,1,0)(1 ?/?- kkkkk xfHxx (B-5)

where x is an n vector of variables, f is an n vectors of functions and Hk is the k
th

 estimate for the

inversed Jacobian matrix (matrix of partial derivatives). The identity matrix I is often used as

initial estimate for the inversed Jacobian matrix H0. This matrix is updated in iteration k using

the equation

kk

T

k

k

T

kkkk

kk
yHp

HppyH
HH

.)(
. 1

/
/?- (B-6)

where p and kkk xx /? -1)()(1 kkk xfxfy /? - .

The Euclidean norm of pk can be used as error estimate. Thus ||||~
kk p?g . The iterations can be

stopped when . 510ˆ />kg

E Broyden, C. G. Mathematics of Computation, 19, 577-593(1965)

Proceedings of the 2004 American Society for Engineering Education Annual Conference &Exposition

Copyright ©2004, American Society for Engineering Education

P
age 9.563.13

