
Paper ID #9465

Enhancing Computer Science Programming Courses to Prepare Students for
Software Engineering

Dr. J. Jenny Li, Kean University

Prior to joining Kean as a faculty member last month, Dr. J. Jenny Li had been a research scientist at Avaya
Labs, formerly part of Bell Labs, for 13 years. She is an experienced industrial researcher with more than
70 papers published in technical journals and conferences, and holder of over 20 patents with five pending
applications. Her specialties are in automatic failure detection, with particular emphasis on reliability,
security, performance and testing. Before Avaya, she worked at Bellcore (formerly Telcordia and now
Applied Communication Science) for 5 years. She received her Ph.D from University of Waterloo in
1996.

Dr. Patricia Morreale, Kean University

Patricia Morreale is an Associate Professor in the Department of Computer Science at Kean University,
Union, NJ.

c©American Society for Engineering Education, 2014

P
age 24.522.1

Enhancing Computer Science Programming Courses to

Prepare Students for Software Engineering

J. Jenny Li and Patricia Morreale

Computer Science Department

Kean University

1000 Morris Ave, Union 07083 NJ USA

{juli|pmorreale}@kean.edu

Abstract: Most Computer Science (CS) undergraduate programs include an introductory

programing course intended to teach basic programming to students of various majors. Students

from non-CS majors often find this course to be difficult and tedious, while CS-major students

require the course to be challenging enough to establish a solid foundation for their future study

of the major. We propose to introduce basic concepts of software engineering into such a course

to make it easier for non-CS students to write meaningful programs and to prepare CS students

for future software engineering courses. The two concepts are integrated development

environment (IDE) and basic software testing. We observed the students’ progress and found that

on average students can program similar projects 80% faster after learning and using the two

software engineering concepts.

1. Introduction

Introductory software programing is an important first-year course that brings students to the

door step of the CS major, which we consider as a CS1 course based on the definition given in

[1]. It is also a requisite course for many students majored in Science, Technology, Engineering

and Math (STEM). The majority of the curriculum of this course is to teach a specific

programing language without any introductory concepts of software engineering. For example,

students might learn to write simple programs from the textbook using a text editor, but not

know how to write realistic programs using an IDE and how to test the programs. Writing

programs with a text editor and using a command line to compile the code is the main cause of

the non-CS students’ complaint about programming being too difficult and tedious. On the other

hand, CS students might learn the syntax and semantics of Java or C/C++ to the extent that they

can write code for simple problems, but not know how to test the resulting program. The lack of

knowledge about basic testing concepts would trigger a scenario with inoperable code, such that

the code submitted by students for the course project might look nice syntactically, but could not

execute properly according to various test cases. The student code may work for one test case,

but not for others.

P
age 24.522.2

Without any introduction to some basic software engineering concepts, such as proper usage

of IDE and basic testing concepts, the student would not necessarily understand the benefit of

IDE and the need for code testing and would not know how to test their code properly before

submission. Their training in the programming course might even give them an unhealthy habit

of focusing on text typing of programs without regard for proper support environment and

adequate testing to insure the quality of their code, which will adversely hinder their future

learning of software engineering in higher level courses.

Chen and Hall [2] proposed to apply software engineering to CS1. Their approach seeks to

bring in to the course all major software engineering concepts from designing to testing. We

found it very difficult to squeeze all the suggested content into the course due to our time

schedule constraints. We can only introduce one or two basic software concepts with a total

available lecture time of about 1 or 2 hours. We introduced the concept and usage of IDE to

make programming straightforward to non-CS students and thrilling to CS students because they

can write meaningful code so much faster. We also added basic software testing concept to the

course to train students to start with proper software engineering practice of keeping testing in

mind while programing. This gives the students advantages in preparation for future software

engineering courses while still getting solid CS1 knowledge.

We understand that adding software engineering to CS1 is not a new idea, which has been

proposed since 90’s [3] [4] [5]. The goal of this paper is to take measurement of impact of

introducing various software engineering concepts to help faculty decide what should be added

under the tight schedule of the course. After this case study, we are quite convinced that IDE and

basic testing concept should be included in CS1. The rest of the paper is organized as follows.

Section 2 describes how IDE was introduced into the teaching curriculum and how the impact

data was collected and analyzed. Section 3 presents the data collected to compare students’

project speed before and after learning the concept of basic testing. Section 4 concludes through

data analysis of the previous section that IDE helps to motivate students for programing and that

students finish similar projects twice as fast after learning the basic testing concept and they are

better prepared for later software engineering courses.

2. Teaching Integrated Development Environment (IDE)

Since the introductory programming course was offered to both CS-major students and other

STEM major students, it has many sections. For the fall of 2013, we have 4 sections of the

course, i.e. the course was offered to four different classes at four different time slots. Two of the

classes did not have Integrated Development Environment (IDE) included in the curriculum,

while the other two had. The students of the 4 classes were randomly selected and mixed with

students of different majors. We can safely assume that the average academic ability of each

class is very close, i.e. their difference is negligible. P
age 24.522.3

We added the concept of IDE to the last two classes very early in the semester. We taught

the concept and how to use existing popular IDEs in the second week of the lecture when arrays

and methods were introduced. By the third week, when the students were able to write programs

with methods, we allowed them to try out Eclipse as their IDE (any version of Eclipse) and write

programs using Eclipse in a lab setting. By the fourth week, all students had chosen to install a

version of Eclipse at their home machine to use it for their programming homework. Please note

that we gave students options of whether to use IDE or use simple text editor with command line

compiler and code execution. It turned out that 100% of the around 40 students in the two classes

picked IDE.

For the first two classes, we didn’t give students an option of using IDE. Many non-software

engineering companies such as Google and Facebook in fact do not encourage the usage of

software engineering tools. For example, in their recruitment job interviews of new college

graduates, these companies require student candidates to write code on a text editor without

supports from an IDE tool. However, most companies do use software engineering tools

internally for software development.

We were not able to collect data to compare programming abilities of students from the 4

different classes. We did a very brief exit interview of randomly selected students from the 4

classes at the end of the semester. The interview questionnaire focuses on students’ perception of

whether any IDE should be introduced into the course curriculum and if it helps them in

understanding the programming language. Most importantly, one of the questions is whether it

helps them to stay in CS major or even switch from other majors to CS. The students found that

IDE help them enforcing their knowledge of program language syntax and semantics. They are

less likely to make mistakes and IDE is particularly useful to non-CS students who found

programing to be more interesting after using IDE because it allows them to try out different

ways of programming and learn or to catch up with programing skills. IDEs point out syntax

errors for them to figure out how to correct on their own, even without help from a tutor or an

instructor.

Overall students enthusiastically support the idea of introducing software engineering tools

such as an IDE in the programming course. For example, one student from a class that does not

use IDE even decided to retake the course so that she can get into one with IDE. However, as we

discussed earlier, some non-software-engineering mature companies still require text editors in

job interviews. So we encourage students to learn about how to code using text editor before

starting with an IDE tool. The introduction of IDE is brief in this course and for this study. We

focus most of our efforts on measuring the impact of introducing the testing concept, which is

given in the next section.

P
age 24.522.4

3. Introducing Basic Testing Concepts

The key concept we introduced into the last two classes is basic testing. Before the concept

was introduced, the goal of coding for students is to have the program run for one specific

scenario. For example, a simple calculator program would only do basic arithmetic calculation

without checking of input formats or unintended operations such as division by 0.

To overcome the issue of not taking testing into consideration in programming courses, we

proposed to incorporate a lecture on basic testing into the programing course to enhance the

existing curriculum. Basic testing was added in the beginning of the second half of the semester,

by which time the students were able to or had written a real runnable program. At this point, the

students can use either conventional approach or test-driven approach to start their next coding

project and will be able to compare their outcomes. Through the comparison study, they will be

able to better understand and appreciate software engineering testing concepts. Hopefully when

they see the benefit, they will be more likely to take high level software engineering courses at

the later stage of their study.

Because the testing was only introduced to the two classes with IDE experience, we were

able to collect more data points to show students’ progress after the learning of the testing

concept. We first had students working on a project, A, without any discussion of testing

concepts and we then introduced the concept of basic testing, followed by their work on another

project, B.

3.1 Four Measurements

From each project, we collected the following time measurements:

1) Planning time: the duration from a student receiving the problem to the time (s)he starting

to write code. Because these students haven’t taken any software engineering courses, they don’t

have any formal knowledge of design and specification. They rely on the reading of the project

description to understand the requirements of the project. So this measurement tells us how much

time the students take to comprehend the project requirements and it is not the time for design or

requirement analysis.

 2) Coding time: the duration from when the student starts to write the code to her/his

attempt to run the first usage scenario of the project. The definition of this one is critical to our

analysis, which clearly divides up coding and testing time. We understand that at this stage that

coding and testing might mingle together. Most developers might try to add more code after the

first attempt of running the code. Since this is an introductory programming course, even though

the projects are realistic and useful, they tend to be in the smaller size of less than 1000 lines of

uncommented code, which justifies our assumption that students always finish up coding before

starting to run the program for the first time.

P
age 24.522.5

3) Testing time: the duration for the student’s first attempt to run the program to the time

that the first usage scenario works on the program. After the first running of the program, the

students might find that their program does not work correctly as planned for the first scenario.

They then revise and retest the program until it runs the first scenario properly, which are all

included in this test time measurement. Please note here the key word of “first scenario”. Before

learning testing concept, students tend to think that their programs work or are finished, as long

as the main usage scenario can get through the program uneventfully. When the program is

executed under some less common but possible scenarios, it often crashes. This leads to the next

measurement of revision time.

4) Revision time: the duration from a working main scenario to the time until the program

runs for all provided test cases. Since before learning of testing concepts, students might not

consider other possible usage scenarios of the programs, they would not expect to include

revision time during the planning. So we should see a larger improvement of this measurement

before and after introduction of the basic testing concept. This is the key measurement we will

study to show the impact of testing concepts.

We collected measurement numbers of all students from the two classes of students with

IDE training and randomly selected 15, 5 with high Grade Point Average (GPA), 5 medium and

5 low. Table 1 in Appendix shows the raw data we collected with the 15 students. We found

noticeable improvement in the measurements from project A to B, which will be explained in the

rest of subsections.

3.2 Comparing Planning Time

Project A and B are quite similar. Project A is to write a program to help veterinarians

maintain records of different types of pets, i.e. creating a Pet class with accompanying methods

to maintain, store, retrieve, and sort pet records. Project B is to write a program to help realtors

maintain property records using a Property class. The structures of the two programs are quite

similar and most importantly the two projects have similar number lines of code, as well as

similar number of function points. So the students’ familiarity with the type of the project should

help them reduce the time of the other three measurements from Project A to Project B. As it can

be seen from the following Chart 1 that all students spent less time in understanding Project B

because their previous experience with Project A.

P
age 24.522.6

Chart 1. Planning time comparison of Projects A and B.

On the other hand, during the planning time of Project B, they would also need to come up

with additional test cases besides the only one main usage scenario in Project A. To maintain our

ability to gauge the impact of the second time familiarity to the students’ speed in the three other

measurements, we exclude the additional test-case generation time from the planning stage by

providing those augmented test cases for Project B. In this way, we can use the ratio of the

improvement with the planning time as a normalization factor when comparing the other three

measurements which are important for the programming course and this study.

On average, the students spent 81 time units to plan for Project A and 23.4 time units for

Project B. The ratio of improvement is 3.5 fold. We believe this ratio is an indicator of the

impact of students’ familiarity with this type of projects and it should be taken away from the

other ratios when comparing other three measurements.

3.3 Faster Coding and First Test Case

The coding speed of the students has also improved greatly from project A to project B,

which we believe is due to their increasing fluency with the programming language and the IDE

tool introduced earlier in the course, as well as their familiarity with the project type. Chart 2

shows the comparison of coding time of the two projects.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PlaningA

PlaningB

P
age 24.522.7

Chart 2: Comparison of Projects A and B coding time

The mean coding time is 212 for Project A and 34, an improvement of 6.2 times, of which

3.5 is caused by students’ familiarity with the type of project. So the actual improvement of the

students coding speed is 6.2/3.5=1.8 times as fast as the previous project. This number indicates

that learning of the two software engineering concepts help student to gain knowledge of the

programing language, which is the core of this programing course.

Another observation of the chart caught our attention, which is the change in the

measurement variations for the two projects. It shows that the variations among students tend to

even out towards the end of the course. Almost every student show an improvement of their

programming speed, but the difference among them becomes less and less as the time goes. It

seems to support the idea that it gets harder and harder to further improve programming speed

once it gets to a certain point, which can be a subject for another study. It also seems to suggest

that different levels of courses should be offered to various levels of students.

For the third set of measurements, the situations for ensuring proper execution of the first

test case are identical in two projects. So we did not expect much difference between the two

projects. It turned out the ratio of the time reduction is 2.2 for this set of measurements.

3.4 Reduction in Revision Time and Overall Project Time

The most important of the four measurements is the revision time because in Project A,

students did not think of other test cases except the main usage scenario. This measurement is

the indicator of how much testing concept or thinking of test cases before coding helps to reduce

the test revision time, and thus overall project time. Chart 3 below compares the revision time of

Project A and B.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CodingA

CodingB

P
age 24.522.8

Chart 3. Comparing revision time of Project A and B

Chart 3 might look familiar to readers. Interestingly, the ratio of the time improvement for

revision is identical to that of the planning time of 3.5. This reveals that the impact of learning

basic testing is equivalent of previous experience with similar projects. This really makes sense

to most experienced software engineers. Previous similar experience helps them prepare for how

to test a project and vice versa. We see great reduction in revision time after students learned

about basic testing, which is the result we expect and hope to validate through this study. The

revision time was indeed reduced based on my collected data.

As to the reduction of the overall project finishing time, it has an improvement ratio of 4.4,

which indicate a saving of 4.4/3.5=1.3, i.e. 30% reduction in total project finishing time

excluding the factor of students’ familiarity with the project. All these calculations and their

meanings can be found in Table 1 of Appendix.

4. Concluding Observations

This paper reports on a trial of augmenting IDE tools and basic testing concept to the

curriculum of an introductory computer science course with four different classes of students.

Our data are collected mainly from the second two classes for the trial and they showed that the

time to complete projects is reduced, students code fast with the help of IDE and test more

effectively with the concept of thinking about likely test cases before coding. The data show an

80% reduction in coding time and 30% reduction in overall project time, a summation of all 4

measurements, planning time, coding time, testing time and revision time. Another advantage of

this enhanced curriculum with testing concepts is better preparation of students for future

software engineering courses such as software assurance and software testing.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RevisionA

RevisionB

P
age 24.522.9

We understand that our conclusion is based on only on one case study in one semester. One

future research direction is to follow up with the students at their later stage of their

undergraduate study to confirm that indeed more students have selected software engineering

courses and they are better prepared for those courses.

The data we collected clearly indicate that IDE’s and basic testing should be introduced into

introductory programming courses. We hope that this conclusion will encourage computer

science faculty to make the choice of augmenting briefly with IDEs and basic testing to their

early programing courses. Since the study presented in this paper is straightforward with a

limited number of randomly selected samples, we encourage others to repeat the experiment and

to compare the impact of introducing other software engineering concepts into programming

courses. We hope this paper will contribute to helping faculty make decisions on whether to add

software engineering concepts into CS1 and CS2 courses and what software engineering

concepts to be added to CS1 for improved student preparation and future success in the major.

5. References

[1] M. Hertz, “What do “CS1" and “CS2" mean?: Investigating differences in the early

courses”, Proceedings of the 41
st
 ACM Technical Symposium on Computer Science

Education(SIGCSE10), pp 199-203, New York, NY, USA, 2010.

[2] W. K. Chen and B. R. Hall, “Applying software engineering in CS1”, Proceedings of the

18
th

 \ACM Conference on Innovation and Technology in Computer Science Education,

pp 297-302, New York, NY, USA 2013

[3] J. L. Gersting, “A software engineering “frosting" on a traditional CS-1 course”,

SIGCSE’94, pp 233-237, March 1994.

[4] S. H. Edwards, “Improving student performance by evaluating how well students test

their own programs”, Journal of Education Resources in Computing (JERIC), Volume 3,

Issue3, Sept 2003.

[5] M. H. Goldwasser, “A gimmick to integrate software testing throughout the curriculum.

SIGCSE’02, 34(1) pp 271-275, February 2002.

6. Appendix

Table 1: The 4 sets of Project A and B time measurements including 15 randomly selected

students

Student PlanA PlanB CodeA CodeB TestA TestB ReviseA ReviseB totalA totalB

1 30 1 45 60 20 1 30 1 125 63

2 20 10 90 15 25 10 10 7 145 42

3 120 30 270 15 30 5 60 5 480 55

4 20 10 40 10 10 5 15 5 85 30

5 60 30 180 120 1 1 60 30 301 181

6 25 15 120 25 60 10 12 7 217 57

7 90 10 150 10 27 5 90 5 357 30

P
age 24.522.10

8 20 15 40 10 20 5 15 2 95 32

9 20 25 120 60 30 15 90 30 260 130

10 180 60 720 60 60 60 120 60 1080 240

11 120 60 600 60 60 60 180 120 960 300

12 300 60 480 20 1 1 1 1 782 82

13 30 5 60 20 5 1 15 3 110 29

14 60 15 180 10 60 5 240 2 540 32

15 120 5 90 10 30 5 60 5 300 25

total 1215 351 3185 505 439 189 998 283 5837 1328

average 81 23.4 212.3 33.7 29.3 12.6 66.5 18.9 389.1 88.5

ratio 3.5 1 6.2 1 2.2 1 3.5 1 4.4 1

P
age 24.522.11

