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Abstract

The ChERT project is focusing on developing an embedded system curriculum with the follow-
ing innovative features: (a) an interdisciplinary curriculum and (b) integration of research results
into teaching. The design of embedded systems requires knowledge from many different disci-
plines. For this purpose, we have designed a sequence of interdisciplinary courses for imparting
embedded systems design education. The course entitled “Real-time Systems Theory” is a part of
this curriculum. This course directly imports ideas developed as part of our research in embedded
systems. The aim of this course is to provide students with a strong theoretical foundation for
designing and analyzing embedded systems. This paper will present the motivation for designing
this course, the importance of material covered in the course, and the impact of this course on the
overall curriculum. We will report our experience in teaching this course and the feedback ob-
tained from the students. The impact of having students from many engineering disciplines taking
this course will be discussed.

1 Introduction

The number of embedded electronic systems used in automobiles, tractors, and other control sys-
tems continues to increase dramatically. Microprocessors currently used in embedded systems
are as powerful as the large processors used only a few years ago. Development systems have
also improved dramatically in the last decade, and use of high level languages in implementing
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embedded systems is now common. With these advances, many complex features can be incor-
porated in embedded systems such as multi-tasking/threading and sophisticated network protocols
that were only found in large operating systems several years ago. There exists a sufficient body
of research in a number of areas such as real-time computing, fault-tolerance and networking that
can be utilized to incorporate complex features in embedded systems. To train engineers to design
and develop such systems,these research results have to be integrated into a curriculum.

Design and implementation of embedded systems requires abroad knowledge in areas tradi-
tionally not covered in any one discipline. These areas include (a) Computer Science (which deals
mainly with high-level software), (b) Electrical and Computer Engineering (which deals mainly
with hardware and low-level software), and (c) other engineering disciplines, such as Agricultural
and Biosystems Engineering (which deals with application development and numerous other pe-
ripherals such as sensors and actuators) and Mechanical and Nuclear Engineering (which deals
with control automation for safety critical systems). As a result, it is very difficult to train students
and engineers who can effectively design and implement embedded systems.

The ChERT (researCH in Embedded Real Time systems) project at Kansas State Univeristy
is funded the NSF Combined Research and Curriculum Development program and is focusing on
developing an embedded system curriculum with the following innovative features: (a)an interdis-
ciplinary curriculumand (b)integration of research results into teaching. The curriculum consists
of a sequence of four courses. The first course is a remedial course consisting of three modules
(data structures, concurrent programming, and real-time electronics) to bring students from differ-
ent backgrounds up to speed. The second course again consists of three modules, namely real-time
programming fundamentals, real-time operating systems and real-time electronics. This course is
required by all students in the curriculum and introduces students to concepts that allow simple but
complete embedded systems to be developed. The fourth course is the Capstone design course in
which a major industrial-sized embedded system is designed by students.

The third course in the sequence, Real-time Systems Theory, is intended to teach techniques
for design and analysis of an embedded system. Typically, an industrial-sized embedded system
involves a large number of components interacting with one another in complex ways. Although
the second course teaches principles to design simple embedded systems, it is not sufficient to
deal with the complexity of larger embedded systems. In the third course, we familiarize students
with object oriented design techniques, aspect-oriented programming approach based on Unified
Modeling Language of Rational Unified Process (which is an industry standard), schedulability
analysis and verification. Many of these concepts have been developed as part of our embedded
systems research. The topics covered in this course provide knowledge of various design and anal-
ysis techniques to manage the complexity of large embedded systems. This course is an integral
part of curriculum as it allows students to make the jump from concepts learned in the second
course to design industrial-sized systems in the Capstone Design course.
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Figure 1: Architecture of the PA application.

This paper is organized as follows. We first present the basic structure of an embedded system
and discuss its characteristics that influenced our design methodology and contents of the course.
Subsequently, we discuss the concepts covered in the course. In Section 4, we discuss the overall
embedded systems curriculum and the impact of the Real-time Theory course on the curriculum.
In Section 5, we present the student evaluation, feedback obtained, lessons learned and future
directions for this course. Finally, we present our conclusions in Section 6.

2 Motivation for the Real-Time Systems Theory course

A typical embedded system may consist of a large number of devices (sensors and actuators) and
separate processors that control the devices which often results in a large number of complex,
interacting activities. Figure 1 shows the architecture of a Precision Agriculture (PA) application
for customizing the rates and/or compositions of farm inputs such as herbicides, pesticides, and
fertilizers at every location in the agricultural field. The example system consists of various sensing
and actuating devices controlled by Infineon C167CR microprocessor based controller modules.
C167CR controller modules are equipped with various on-chip interface modules including serial-
interface module, analog input module, digital interface module, and pulse interface module. All
controller modules are connected via a Controller Area Network (CAN). A prototype of this system
has already been developed [WZO+00]. In the following, we list several characteristics of an
embedded system that influenced our design methodology and the course contents.

� Embedded systems often have a large number of components that may interact with one an-
other in complex and sometimes unpredictable ways. Such interactions may involveexecu-
tion dependencies(for example, in Figure 1, the optical weed sensor must compute the weed
density for each GPS reading sent by the GPS unit). In on-going research, we are working
on more complex applications (with103 components) designed using Boeing’s BoldStroke
system [Sha99] which, in addition, involvedata dependencyinteractions due to shared data.
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� Embedded systems are often dynamic in nature wherein new components may need to be
plugged in and older components may have to be removed. In addition, interaction between
the components may have to be restructured (e:g:; to further constrain the system to satisfy
additional functional or performance requirements).

� Embedded systems are being increasingly used in safety-critical systems (e:g:, avionics,
automotive and medical domains). For such applications, verification of embedded systems
is essential. Traditional design techniques often rely on testing which may not be suitable
for such domains.

� In addition to functional requirements, an embedded system may have several non-functional
requirements such as real-time deadlines, synchronization and fault-tolerance. For example,
schedulability analysis of a system may be needed to ensure the real-time deadlines are
satisfied.

As illustrated by these requirements, the complexity of embedded systems demand that embed-
ded systems engineers be provided with powerful design and analysis techniques. The design of
embedded systems must be modular, and component based (so that they can be restructured if nec-
essary), and embedded system engineers must have knowledge of analysis and verification tech-
niques. Object-oriented analysis and design methodologies have been very successful in creating
highly reusable software systems. In particular, the Rational Unified Process (RUP) in the Unified
Modeling Language (UML) has become thede factostandard in software development [JBR99].
When applying RUP in the development of embedded systems, itsuse-case drivenmethodology
effectively produces a set of sequential programs, each of which controls a specific type of de-
vices. In embedded systems, these programs are often required to interact with each other. More
precisely, these programs are executed concurrently by multiple threads, and such threads syn-
chronize with each other for collaboration. Thus, the designer is confronted with several issues
such as those of synchronization, scheduling, and distribution, related to the interactions between
the concurrent threads. The current RUP, however, does not provide a standard methodology to
develop code for such interactions.

We have developed an aspect-oriented approach to develop embedded systems [MSN00] that in-
volves two stages. In the first stage, the functional code is developed using RUP. The development
of the functional code starts with the identification ofactorswho interact with the system by send-
ing stimuli and receiving responses. Use cases are used to specify the way actors interact with the
system. In the next step, we consider how the use-cases are realized by (1) identifying the necessary
classes and the relationships between those classes (Class Model) and (2) describing use-case re-
alizations which describe the collaborations between instances of the classes. Sequence diagrams,
collaboration diagrams, and scenarios are often used to describe use-case realizations. Finally, in
the implementation step, each use-case realization is implemented on a target architecture. The
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second stage involves the development of aspect code for various properties such as synchro-
nization, fault-tolerance and distribution. In this phase, various analyses such as those related to
scheduling and verification are also carried out. We have incorporated results from this methodol-
ogy into the real-time theory course which we describe next.

3 Real-time Systems Theory Course contents

The Real-time Embedded Systems Theory course is intended to teach techniques for design and
analysis of an embedded system. The course directly imports ideas developed as part of our re-
search in embedded systems. The aim of this course is to address the issues outlined in the previous
section and provide students with a strong theoretical foundation in designing and analyzing em-
bedded systems. This course is divided into three modules:

1. The first module deals with object oriented design techniques. As discussed above, this mod-
ule introduces students to the Rational Unified Process model. The concepts of use cases,
scenarios, and use case realization are introduced. Subsequently, we teach our aspect ori-
ented methodology for developing embedded systems. A large example system (a telephone
call distributor system) is used to illustrate the methodology.

2. The second module is concerned with analysis techniques. In particular, the focus is on real-
time scheduling and schedulability analysis. Various classes of scheduling algorithms such
as clock-driven scheduling, priority-driven scheduling, and priority-inheritance protocols are
discussed. Scheduling in real-time networks such as controller area networks and its analysis
is also discussed.

3. Verification and testing is the subject of the third module. The goal of this module is to fa-
miliarize students with verification and testing techniques and introduce them to appropriate
tools. In particular, the SPIN tool and its specification language Promela is used [Hol91].
This tool has a widely used model checker and has been extended to deal with real-time
properties. Various example systems are used to illustrate common types of errors in em-
bedded system programming such as concurrent access in a multiple ATM system, and race
conditions in electronic circuits.

The duration of each module is five weeks. In this course, we assume that students are proficient
in programming but may not have exposure to modular design techniques, analysis and verifica-
tion. This course was taught in Spring 2001.
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4 Overall Embedded Systems Curriculum

In this section, we describe the overall embedded systems curriculum. Subsequently, we discuss
the relationship and importance of the theory course to the curriculum.

� Remedial Course: This course consists of three modules that cover basic electronics, data
structures, and concurrent programming respectively. They are intended to fill deficiencies
for students from different backgrounds (such as engineering departments other than CS, CE
and EE).

� Implementation Course: This is the first core course that allows students to work with
state-of-the-art design tools, embedded development environments, and target platforms to
interconnect a variety of sensors and actuators in complete, but simple real-time embedded
systems. Topics covered include the relationship between C/C++ constructs and correspond-
ing assembly code generated by compilers, real-time operating systems, real-time network
protocols, and the interconnection of peripherals.

� Real-Time Systems Theory: This is the second core course that covers design and analysis
of real-time embedded systems, including language and operating system support, schedul-
ing, feasibility analysis, fault tolerance, object-oriented design methodology and tools, veri-
fication, and validation.

� Capstone Design Course: This is a project-based course to design and implement a com-
plete and comprehensive real-time embedded system.

Since this is an multidisciplinary program, we have developed three complementary physical
labs, with one in each participating department. We have also developed a prototype virtual lab to
interactively use our embedded system lab resources over the web. Initial testing conducted to date
with the virtual lab indicates that network bandwidth requirements are quite manageable, even for
students logging in from home on a 56K line.

Relationship of the Theory course to the curriculum:
The second course in the curriculum teaches principles to design simple embedded systems. For
example, in Fall 2001, students designed a controller (for acceleration, braking and steering) for
a car with stepper and DC motors. However, the concepts taught in this course are not sufficient
to deal with the complexity of larger embedded systems. An industrial-sized embedded system
may involve a large number of components interacting with one another in complex ways. Hence,
significant emphasis must be placed on software engineering principles during the design stage. In
addition, currently most embedded systems code is developed using a high-level language, only
a small part is typically written in assembly language. Therefore, students must learn the design
tools and techniques available for object oriented in high-level languages. Furthermore, the em-
bedded systems designer must also have knowledge of analysis techniques to ensure that real-time
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deadlines are met and to provide assurance that the system will satisfy its required functionality.
The intent of the theory course is to familiarize students with these concepts. As discussed in
Section 3, we teach students object oriented design techniques and an aspect-oriented approach
based on UML. We also teach techniques for analyzing embedded systems such as schedulability
analysis and verification. We believe that this course is an integral part of curriculum that allows
students to make the jump from concepts learned in the second course to design industrial-sized
systems in the Capstone Design course.

5 Course Evaluation and Assessment

� Course Delivery Process:
In Spring 2001, students were asked to evaluate the effectiveness of different course elements in
terms of how they contributed to their learning. Various course elements such as lecture notes,
assignments, and web resources were used to evaluate the course delivery process. As shown in
the following table, the students were overwhelmingly positive about the course delivery process.
Students used a 5-point scale ( 1 = Strongly disagree, 2 = Disagree, 3 = In between, 4 = Agree,
5 = Strongly agree). % positive reflects ratings of 4 or 5; % negative reflects ratings of 1 or 2.
Percentages may not be equal to 100 because those responding “in-between” and those omitting
the items are not reported.

Lectures Handouts Assignments Web Resources
% positive 83 86 80 65
% negative 3 3 4 5

� Amount of Student Learning:
The amount of student learning was also evaluated. To evaluate prior knowledge, students were
asked to evaluate the statement“Before I took this course, I knew a lot about ...[specific topic]....
The specific topicslisted were related to concurrent programming, verification, specification of
properties, object oriented techniques, scheduling, and “synchronization”. As seen from the fol-
lowing table, most students had some prior knowledge but not a great deal (only 16% indicated that
they had prior knowledge). To assess learning, we also asked to evaluate the statement“I learned
a lot about ...[specific topic]...for each topic. Students were generally positive about the amount
of material learned.

Prior knowledge Amount of learning Overall learning
% positive 16 76 78
% negative 53 6 3
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� Impact of students from different disciplines:
One of the challenges we faced in this course was that students from many different disciplines
were enrolled in the course. Although the first two courses in the sequence did address this prob-
lem to some extent by bringing students deficient in some topics up to speed, we found that students
still needed more time to grasp the topics covered in this course (the duration of each module in the
course is 5 weeks). In our survey, the students were asked to respond to the questionWhich content
areas or topics should be covered in moredetail or given more time. In response to this statement,
the students listed a number of topics from each of the modules. When askedWhich content areas
or topics should be covered in lessdetail or given less time, very few topics were listed. From
the survey, we also found that students did understand the relevance of the material covered in this
course to designing embedded systems, but they were concerned that too many topics were being
covered in one course. Specifically, we feel that for students from disciplines other than computer
science, many of these concepts are new. As a result of this feedback, we are in the process of
restructuring the course sequence to allowmultiple entry pointsbased on the skills and needs of
the users. We will target the following three types of users:
(a) Those who have limited software engineering background: A typical profile of such users is
those who only need to reconfigure existing embedded systems by adding/removing/exchanging
some devices. For such users, we intend to develop a plug-and-play approach whereby they can
select modules from a library, link them, and download the resulting software to the target plat-
form.
(b) Students and professionals whose main interests are in development of mechatronics devices
and their applications in embedded systems: A typical profile of these users is those who need
to develop embedded systems with various devices to fit their needs. Their backgroond includes
skills to develop sequential programs in high-level languages to control their devices. They need
to be taught a pattern-based approach to develop aspect code such as synchronization, real-time,
and fault tolerance aspects.
(c) Students and professionals with strong mathematics and computer science and/or engineer-
ing backgrounds. Such students need to be taught the methodology and theoretical foundations
in detail so that they can develop code for any type of embedded system application and target
platform.

6 Conclusions

With the proliferation of electronic components on board modern equipment, automobiles, appli-
ances and other control systems, there is an increased demand for professionals trained to develop
embedded electronic systems. We are developing a multidisciplinary curriculum for training stu-
dents to design embedded systems. Due to the complex nature of embedded systems, appropri-
ate design and analysis tools are required to manage the complexity of embedded systems. The
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Real-time Systems Theory course provides students with the foundation require to use appropriate
design and analysis tools. This paper presented the motivation for designing this course, its course
contexts and its impact on the overall curriculum. We also presented the student evaluations for
the course delivery process and the amount of learning.
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