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ABSTRACT 

Since the 1999 fall semester, the TI-92 Plus or the TI-89 (scientific calculators with symbolic 
computation capabilities) has been compulsory for all full-time students entering our engineering 
school.  The introduction of this hand-held technology has forced us to re-assess our goals and 
explore new approaches in teaching mathematics. 

In this paper, we will present innovative uses of the TI-92 Plus/89 that relate to our calculus and 
differential equations courses.  We will give examples of presentations taken from our lectures 
that illustrate how they have changed since the mandatory introduction of these calculators. We 
will also give examples of questions that we use to assess our students’ understanding of the 
material. 

I.  INTRODUCTION 

In 1996, Texas Instruments’ TI-92, precursor of the TI-92 Plus and the TI-89,‡ made its way into 
our classrooms.  At the time, this symbolic hand-held calculator was the only one available that 
had general algebraic computation capabilities.  From 1996 to 1999, as more and more students 
brought these calculators into our classrooms, it was becoming difficult to design tests that would 
correctly assess student learning.  To some extent, and in an effort to minimize inequities, we 
were led to essentially supplying the answers to questions.  For example, we would ask students 
to show that the derivative of 
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instead of asking them to find the derivative, and simplify the answer.  One can understand our 
misgivings about using this type of assessment.  In fact, these symbolic hand-held calculators 
forced us to re-examine not only the assessment tools we used but also the way we taught.  A 
decision had to be made, do we prohibit the use of these calculators or do we embrace the 
opportunities they offer?  

Fortunately our decision was made easier, but was by no means easy, by the fact that a majority 
of the mathematics lecturers at our university were familiar with computer algebra systems 
                                                 
†  École de technologie supérieure is a technical engineering school with an undergraduate student enrolment of 
approximately 2800. 
‡ The TI-92 Plus and the TI-89 offer the same symbolic computation capabilities; they differ mainly by their 
physical shape and size. 
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(CAS).  We regularly used Maple or Derive software to illustrate concepts in class and/or have 
students use them to solve more algebraically intensive problems. The mathematics professors 
decided, with the approval of our university, that as of the 1999 fall semester the TI-92 Plus or 
the TI-89 would be compulsory for all full-time students entering our engineering school. 

II.  LET THE GAMES BEGIN... 

Most students have a hard time seeing computer algebra systems (CAS) as tools for scientific 
exploration; they are often seen as demigods and shrouded in mystery.  Part of our job is to 
demystify these tools and encourage healthy questioning of their use.  It is also important that we 
show students how to explore concepts with the symbolic calculators. How can we expect our 
students to search for answers to questions they cannot yet articulate?  With this in mind, we 
decided to have students learn to use their calculators in calculus, their first mathematics course.  
They are introduced to the workings of the machines during their first semester, as problems 
arise.  For example, since we naturally use graphs to present the derivative, we show students 
how to graph functions on the TI as we talk about the derivative of a function.  This “just in 
time” method of presentation is also used in their subsequent mathematics courses.   

Students now have a tool that can do symbolic computations in much less time than when done 
manually.  For example, there is quite a bit of calculation involved in the decomposition of the 
following rational function into partial fractions. 

( )( ) ( ) ( )
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The concept of decomposition is simple enough but the amount of algebraic manipulations 
involved is substantial. Our motivations must be clear. Is this decomposition what we want our 
students to learn, or is it something we want to use so we can do something else with it, as in 
finding its inverse Laplace transform?   

The symbolic and algebraic computation capabilities of these calculators led us to question and 
change the what and the how we teach mathematics.   What do we want our students to learn?  
What is important?  What should they be able to do manually?  Once students have understood a 
concept, and the subject at-hand can benefit from it, long and tedious manual calculations can be 
left to the calculator.  Students can spend more time developing problem-solving skills by 
spending less time doing manual calculations.  Our teaching goals are shifting from the 
performance of mathematical operations to the use of mathematical concepts.  

III.  ASSESSMENT 

Our assessment tools are undergoing changes that reflect the fact that some manual calculations 
are replaced by the further development of problem-solving skills.  Two-tier exams are 
sometimes used.  In calculus, for example, the first part of the mid-term is used to assess manual 
algebraic dexterity§ and the basic understanding of the material. Calculators are not permitted 
and questions such as the following are asked. 
                                                 
§ We still expect students to do some manual calculations. P
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Consider the plane curve described by the equation ( )2sin x y x+ = . 

a)  Find the slope of the tangent to the curve at ( ) ( ), 0,x y = π . 

b)  Solve ( )2sin x y x+ =  with respect to  y and then find the slope of its tangent at 0x = .  
Explain why the answer is different from what you found in a). 

The second part of the mid-term assesses problem solving skills.  For example, we can ask 
students to solve a few optimization problems instead of the usual one. 

As emphasis is shifting from the performance of mathematical calculations to the better 
understanding of the underlying mathematical concepts, we find the need to be more specific 
than before when designing exam questions.  Students must get a sense of the objectives of the 
questions we ask.  With the TI in hand, some students would simply answer the following 
question with a numerical value and would not necessarily feel the need to explain their thought 
process.  

What is the volume of the solid generated by rotating the region bounded by the circle 
2 2 1x y+ =  about the line 2x = ? 

If students understand that we are evaluating their capacity to write the integral, even when 
working with a CAS they will write the integral. They are also more likely to judge if their 
answer is reasonable.  The previous question has changed to the following. 

A solid S is generated by rotating the region bounded by the circle 2 2 1x y+ =  about the 
line 2x = .  Set up a Riemann sum that approximates the volume of S, and then obtain an 
appropriate definite integral.   What is the volume of the solid S? 

Students spend time learning to use their computing tools.  We verify that they have learned the 
proper use of their calculators by testing them on more challenging problems.  Our objective is to 
have students concentrate their efforts on the modeling aspects of the problem and on the 
interpretation of the results. When students are expected to do all the algebraic computations 
manually, they often lose sight of its objective and forget to answer the question!  By letting 
them use a CAS, the emphasis is put on their problem solving strategy and not their computation 
skills. 

IV.  IN-CLASS EXAMPLES 

To give an idea of our perspective, here are three examples of how we use the calculators in 
class.  The first two examples reinforce connections between differential equations and calculus, 
and the third illustrates how the symbolic computation capabilities of these machines can be used 
to compare mathematical procedures. 

Example 1.  Solving Differential Equations Using Power Series  

Traditionally, when using power series to solve the differential equation related to an RLC 
electrical circuit with variable resistor, the problem was considered solved when we had found 
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the first few terms of the series.  Now, we can easily reinforce the intuitive understanding of a 
series’ convergence by having students use the calculator to explore the quality of 
approximations numerically and graphically by comparing partial sums. 

Variable Resistor.3 The charge ( )q t  on the capacitor in a simple RLC circuit is governed by the 

equation 1''( ) '( ) ( ) ( )CLq t Rq t q t E t+ + = , where L is the inductance, R the resistance, C the 
capacitance, and E the electromotive force.  Since the resistance of a resistor increases with 
temperature, let’s assume that the resistor is heated so the resistance at time t is ( ) 1 10R t t= +  

ohms.  Let’s also assume that 0,1L =  henrys, 2C =  farads, ( ) 0E t = , the initial charge to be 
10 coulombs, and the initial current to be 0 amps.  

In class, emphasis is put on the fact that there is no known type of second order linear equation 
(apart from those with constant coefficients and equations reducible to these by changes of the 
independent variable), which can be solved in terms of elementary functions. This example 
shows how the power series solution is an important tool of approximation for a linear equation 
with variable coefficients. 

We find the power series expansion, about 0t = , for the charge on the capacitor in the usual 
manner by substituting the series 

0
n

nn
a t∞

=∑  for ( )q t  in the left hand side of the equation  
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and, comparing the result to the right hand side 0, find the recurrence formula:   
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We generate the series’ coefficients from the recurrence formula and the initial conditions, 
( ) 00 10q a= =  and ( ) ( ) 10 ' 0 0i q a= = = ,  and write the series expansion 

( ) 2 3 4 5250 775 2125
3 4 610 25q t t t t t= − + − + + ,  0t ≥ . 

As in our traditional mathematics classroom, prior to the CAS era, we use the first five non-zero 
terms of the series expansion to approximate the charge on the capacitor at, for example, 0.3 
seconds: 

( ) 2 3 4 5250 775 2125
3 4 6 0.3

0.3 10 25 9.29
t

q t t t t
=

= − + − + + ≈  coulombs 

and, since this is an alternating series, the error of approximation is bounded by the absolute 
value of the first omitted term, in this case: 0.3879E ≤ .   

One wonders what has changed with the introduction of the TI-89/92 Plus in our classroom.  It is 
still important for students to do some algebraic manipulations, to get a sense of the mathematics 
involved, before turning to the calculators.  But now, it is easy to further develop the intuitive 
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understanding of convergence by using the calculator to explore the quality of the 
approximations numerically and graphically by comparing partial sums. 

We start by having students define the recurrence formula on the TI using the sequence mode.  
To input the recurrence correctly,** students must understand the notation (see screen 1). Here 

( )1u n  corresponds to our sequence of coefficients ( ):na a n= .   We also use the mathematical 

notation Σ to estimate ( )0.3q  and verify the earlier answer that was obtained using 5 non-zero 
terms (see screen 2).  By changing the number of terms used in the approximation, students 
notice the stabilizing digits and get a numerical understanding of convergence.  Finally, we ask 
students to do this same type of calculation for ( )0.6q  and have them notice that the digits 
stabilize more slowly than at t=0.3. 

   
 Screen 1.  Recurrence Screen 2.  Partial sums 

The connection between the numerical estimates and the underlying functions is established by 
looking at the graph of Taylor polynomials (see screens 3 and 4). 

   
 Screen 3.  Taylor polynomials ... Screen 4.  ... and their graphs 

We also compare the number of terms needed for the error of approximation of the charge on the 
capacitor at 0.3t =  and 0.6t =  seconds to be at most 0.0005.  In this case, as we are interested 
in an alternating series, we can easily define an upper bound error function at 0.3t =  seconds 
and another at 0.6t = (see screens 5 and 6). 
                                                 
** Students often have trouble distinguishing between multiplication and functional notation as in ( )1 1( 1)n u n− − , 1n −  

multiplied  by 1u  of  1n − . 
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 Screen 5.  Error function at t=0.3 Screen 6.  Error function at t=0.6 

The fact that the digits in the successive approximations of ( )0.6q  stabilize more slowly than 

that of ( )0.3q  naturally leads us to introduce a function of two variables, t and n, to evaluate the 
upper bound error (see screen 7).  Emphasis is thus put on the fact that accuracy depends not 
only on the number of terms used in the approximation but also on the evaluated location with 
respect to the centre of the interval of convergence. 

 
Screen 7.  Two variable error function 

When presenting such a problem in class, computing time must be relatively short; we want to 
keep things dynamic and not just stand around waiting.  Computing time is less a factor when it 
comes to homework. For the same type of problem, we usually ask students for more precision 
than what was required in class.  The idea is to make the use of the calculators computing power 
and functions†† unavoidable.   

Example 2.  Motion of a Falling Body 

When presenting the classical parachute problem, we ask more than the usual “after how many 
seconds will the parachutist hit the ground?”   We give students direction by asking more 
detailed questions that have them use the calculators.   

Parachutist.3  A parachutist whose mass is 75 kg drops from a helicopter hovering 4000 m 
above the ground and falls toward the earth under the influence of gravity.  Assume the 
gravitational force is constant and that the force due to air resistance is proportional to the 
velocity of the parachutist, with the proportionality constant 1 15k = kg/sec when the chute is 
closed and with 2 105k = kg/sec when the chute is open.  If the chute does not open until 
                                                 
†† We found that many students still have the reflex of repeating the same sequence of calculations for different 
values of n instead of using a function of n. P
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1 minute after the parachutist leaves the helicopter, after how many seconds will she hit the 
ground? 

With the power of symbolic computation at hand, students must analyse the motion of the falling 
body geometrically, numerically, and analytically.  But, when we give this problem as 
homework, we ask more questions.  Students need direction.  Without it, they will simply hand 
in a mess of calculations.  Using a CAS to solve this problem forces students to explain their 
thought process on a different level than the one they were used to; they must demonstrate more 
conceptual mastery than before. 

a)  Determine appropriate differential equations (ODE). 

Students already know how to solve separable and linear differential equations and have been 
introduced to Newtonian Mechanics.  It is established that the motion of the parachutist will take 
place along a vertical axis and that the differential equations encountered are to be solved using 
the deSolve command on the TI calculators.  This way, students concentrate their efforts on the 
modelling aspects of the problem and the interpretation of the results. 

For the purpose of this presentation, we choose ground level as the origin, and the positive 
direction to be pointing upward.  The ground level corresponds to position 0 and  y > 0 is the 
altitude of the parachutist so that y(0) = 4000.  We use two equations to describe motion, one to 
describe the motion before the chute opens and the other to describe the motion after it opens. 

chute opens

ground 

y(0) = 4000

y(s) = 0  
Figure 1.  Fall of the parachutist 

Since y is a decreasing function, its derivative, the velocity v, is negative.  Consequently, our 
ODE is 
 75 75dv

dt g kv= − −  with ( )0 0v = . (1) 
We will use 1 15k k= = kg/sec when the chute is closed and 2 105k k= = kg/sec when the chute 
is open.  
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b)  Graph the slope field of the velocity for the first 60 seconds. 

We explore slope fields interactively in class.  After solving (1) using 15k = , students must 
analyse the motion of the falling body to define appropriate window parameter settings. They 
must think about maximum and minimum velocity on the 60-second interval.  We also have 
them think about terminal velocity by asking them, for example, what percentage of the terminal 
velocity is reached before the opening of the chute? 

   
 Screen 8.  Velocity, first part Screen 9.  Slope field 

c) How long will it take the parachutist to hit the ground? 

Two counters for time are traditionally used to solve the parachute problem because setting 
initial conditions to 0 in both parts of the motion eases manual computation.  However, with 
these calculators we encourage the use of a unique counter for time. Information from the first 
part of the motion is incorporated in the initial conditions of the equation for the second part of 
the motion. 

Using the following definite integral, students determine that the parachutist falls 2697.75 m 
during the first 60 seconds and that, consequently, there are 1302.25 m left to fall. 

60
5

0

49.05 49.05  2697.75
t

e dt− − = −  ∫  m 

In order to find the total time that the parachutist falls, students must solve a second differential 
equation 

 75 75 9.81 105 ,   (60) 49.0497dv v v
dt

= − ⋅ − = − , (2) 

to determine the velocity for the second part of the motion (see screen 10). This velocity must 
then be integrated with respect to time from 60 to a certain unknown upper limit, let’s call it s, 
the time when she hits the ground. See figure 1 and the first line of screen 11.  Finally, to find the 
desired time, they must solve an equation of the form 1302.25rsce as d− − + = − (see screen 11). 

A warning from the TI comes up when it finds s = 241.56 (see the lower left hand corner of 
screen 11).  Students know that the TI usually looks for all the solutions of an equation (and it 
usually does a good job in finding them) and that, when they get “Warning: More solutions may 
exist,” they must give the mathematical arguments supporting their conclusion.  In this case, the 
equation can be written in the form rsce as b− = +  and interpreted as the intersection of a 
decreasing exponential with an increasing line of negative y intercept. Consequently, this 
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equation has a unique real solution.  To think of this simple argument, students must understand 
the basic curves involved.   

   
 Screen 10.  Velocity, second part Screen 11.  Upper limit for time 

d)  Plot the graph of the velocity as a function of time for the entire fall.  Is this function 
continuous at  60t = ? 

We have students use the when function of the TI to define the two-part velocity function.  We 
have them confirm their calculations by graphing the velocity function and use the TI’s 
numerical integration tool to determine the distance travelled in the first 60 seconds of motion.  
We also have them confirm that the parachutist fell 4000 m during the 241.56 seconds (see 
screens 12 and 13). 

   
 Screen 12. Velocity on [ ]0,60t ∈  Screen 13.  Velocity on [ ]0, 241.56t ∈   

The initial condition in (2) ensures continuity of the velocity function at t=60. However, students 
know that the TI connects discontinuities and they may think that this is precisely what has 
happened at t=60.  We expect students to zoom in at t=60 (see screen 14) to confirm continuity 
but we also have them give an analytical argument. 

 
Screen 14.  Velocity about 60t =  
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e) Plot the graph of the altitude as a function of time for the entire fall.  Is this function 
differentiable at  60t = ? 

Vertically aligning the velocity and the altitude graphs makes it easy to see that the velocity is 
the derivative of the altitude function (see screens 15 and 16). 

    
 Screen 15.  Altitude Screen 16.  Velocity 

There seems to be a corner at t = 60 on the altitude function (see screen 15).  In fact, this curve is 
smooth at t = 60 because its derivative is the continuous velocity function.  Once again, students 
are encouraged to use zooming techniques (see screen 17) to conclude differentiability intuitively 
but they must also give an appropriate analytical argument. 

 
Screen 17.  Altitude about 60t =  

Example 3.  Forced Vibrations 

The objective of the following presentation is to raise questions and compare mathematical 
procedures by using the TI’s symbolic computation capabilities. 

When investigating forced vibrations of the mass-spring problem, we have to deal with the 
following ODE: 

( )'' 'mx cx kx F t+ + =  with ( ) 00x x=  and ( ) 0' 0x v= . 

Let 1m = , 2c = , 2k =  and ( ) ( )5sin 2F t t=  and the initial conditions to zero.  

Using the deSolve of the TI, we get a surprisingly long answer: 

2cos 3sin 3cos sin 5sin 5cos 5cos(3 ) sin(3 ) cos 2 sin
4 4 4 4 2 2 4

t tt t t t t tx t t t e e t− −     = − + + + − + − +          
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The roots of the characteristic equation ( ) 2 2 2D D Dϕ = + +  are 1 i− ±  and the external function 

is ( ) ( )5sin 2F t t= . Using the method of undetermined coefficients, we would expect the 
solution to this differential equation to be the sum of a transient function with a steady-state 
periodic function of the following type: 

( ) ( )1 2cos sin cos 2 sin 2tx t e c t c t A t B t−= + + + . 

Why does the answer look different from what was expected?  This question leads us to apply 
the following basic principle.  Even when the system is reliable, the first reflex should be to 
check the answer.  Does the solution verify the initial conditions?  What is left when we input the 
answer in the left hand side differential operator? (See screens 18 and 19) 

   
 Screen 18.  Check initial conditions Screen 19.  Use the differential operator 

The last answer simplifies to ( ) ( )5sin 2F t t=  when we reduce the output using trigonometric 
identities (see screen 20). 

 
Screen 20.  Simplify the output 

The deSolve  method used by this CAS seems to be variation of parameters.  This is easy enough 
to check by going through the method with the TI (see screens 21 to 24). 

   
 Screen 21.  Define the Wronskian Screen 22.  Solve the system 
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 Screen 23.  Integrate Screen 24.  Write the solution 

We also compare the output from the methods of undetermined coefficients and of variation of 
parameters with the one we get using Laplace transforms.  As the initial conditions are set to 
zero, the solution of the ODE is the result of the convolution of the input function 

( ) ( )5sin 2F t t=  with the impulse response function; the impulse response is the inverse Laplace 
transform of the transfer function: 

( )2 2
1 1 sin
2 2 1 1

te t
s s s

−= ↔
+ + + +

. 

This is easily evaluated on the TI (see screen 25).  It’s interesting how students appreciate 
convolution when they don’t have to integrate manually…  Finally,  we notice how the answer 
here (see screen 25) corresponds to what we get using the method of undetermined coefficients 
(see screen 26). 

   
 Screen 25.  Convolution Screen 26.  Undetermined coefficients 

The presentation of these three basic methods for solving ODEs is only worthwhile if the 
students have studied each individual method separately beforehand.  We can bring all of these 
methods together in less than an hour with the help of the CAS.  This gives students a refreshing 
bird’s-eye view of what they have been working on. 

V.  CONCLUDING REMARKS 

Our method builds on existing problems from the mathematical literature.  In fact, the title of this 
paper should be “Examples of how Symbolic, Hand-held Calculators are Changing the way we 
Teach Engineering Mathematics.”  We have taken, and are still taking, the time to adapt our 
teaching methods to our new technological reality.  The more we work with this hand-held 
technology, the more ideas take shape and enhance our teaching and our students’ learning. 
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With all this available technology, our function as guides is as important, if not more so, than 
ever.  Teachers must decide in what situations the use of the calculator and some of its 
functionalities are to be permitted and when they should be disallowed.  However, as the last two 
examples show, we can take advantage of the symbolic computation possibilities and do more 
mathematics by leaving part of the manual computation to the CAS.  Without it, we cannot do all 
the calculations quickly and efficiently and often lose sight of our objectives. 

“...The environment in which instructors teach, and students learn, 
differential equations has changed enormously in the past few years and 
continues to evolve at a rapid pace...” W.E. Boyce and R.C. DiPrima2 

It is almost impossible to keep abreast of all the latest developments in teaching with technology 
but it is well worth the effort to try.  We incorporated the use of the TI-92 Plus/89 in our teaching 
to have students learn hands-on how to use such tools to explore scientific ideas.  This approach 
makes for a more dynamic classroom as students, empowered by this technology, are more likely 
to experiment, question, and be interested in the mathematics.  Also, supported by the CAS to 
solve problems, students learn to explain their thought process on a different level than the one 
they were used to.  They no longer get by with a series of manual calculations to justify their 
answers; they must demonstrate more conceptual mastery than ever before.   

“... the sheer volume of this knowledge has resulted in the separation of the 
originally unified concepts of Calculus and Differential Equations into 
distinct topics studied in a variety of courses. As a result of this separation, 
many students of mathematics never obtain a global understanding of the 
material.  Such understanding is necessary for creative and effective 
application of these concepts when the student is challenged with new 
situations in mathematics and modeling.”  
 W.C. Bauldry, W.Ellis & al.1  
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