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Experimental Exploration of Common Modeling Assumptions 
 
 
 
 
Abstract 
 
The goal of this exercise is to expose undergraduate engineering students to the effect of their 
computational modeling decisions on the predicted dynamic behavior of structural systems.  This 
work is part of an ongoing effort to create a series of full-scale, low-cost experimental exercises 
aimed at improving student learning of Mechanical Vibrations.  This particular exercise focuses 
on the common assumption that building floor and roof diaphragms are rigid.   An assessment of 
the building diaphragm rigidity was performed by the students using Forced Vibration Testing of 
a campus building. In this experiment, the students determined the natural frequencies and mode 
shapes of the buildings.  In current building codes, diaphragms with aspect ratios less than three 
are permitted to be idealized as rigid.  The case study building fell within this boundary.  
However, the students determined that the building’s diaphragm exhibited semi-flexible 
behavior. The students also created simple hand calculation models and detailed computational 
models which confirmed the experimental results.  The predicted story drift for the building was 
significantly higher when modeled with a semi-rigid diaphragm.  When surveyed, the students 
indicated that the exercise had greatly increased their awareness of how modeling assumptions 
affect the final results.  In particular they will be far less accepting of simplified building 
diaphragm modeling for structures sensitive to story drift demand limits. 
 
Introduction  
 
As part of their final analysis course (ARCE 483 Seismic Analysis and Design), Architectural 
Engineering students at California State University, San Luis Obispo, were given the opportunity 
to conduct forced vibration experimentation on a building on campus as well as predict the 
dynamic response of the building.  The goal of this exercise is to expose undergraduate 
engineering students to the effect of their modeling decisions on their prediction of the dynamic 
behavior of structural systems, a task they will soon be charged with as practicing engineers.  
This work is part of an ongoing effort to create a series of full-scale, low-cost experimental 
exercises aimed at improving student learning of mechanical vibrations.  This particular exercise 
focuses on the common assumption that building floor and roof diaphragms are rigid.   
 
Since most mechanical vibrations problems are analyzed using a computer, another focus of this 
exercise is to build student skepticism for their computer models.  Since students lack the 
experience required to develop engineering intuition, they need the tools to determine if their 
computer analysis results are reasonable.  Unfortunately, students are often unsure of how to 
apply their undergraduate education to check computer output.  Therefore, the students are first 
tasked with performing simple hand calculations to check their computer analysis predictions.  
By moving from simple models to increasingly complex models, students are able to see the 
effect of the assumptions in each model. 
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Case Study 
 
The students investigated Unit 5 of the Engineering West Building 21 (EWB Unit 5) located on 
the campus of California Polytechnic State University, San Luis Obispo (see Figure 1).  The two-
story building is rectangular in plan with dimensions of 60′ in the north-south (short) direction 
and 160′ in the east-west (long) direction.   The floor and roof diaphragms are 4½" thick concrete 
slabs. The shear walls in the north-south direction are composed of reinforced masonry. The 
shear wall in the east-west direction is composed of reinforced concrete.  After reviewing the 
plans for the building, the students walked through and around the building to gain a better 
perspective on the building design and construction.  
 

     
 

Figure 1: EWB Unit 5 a) Plan b) Elevation 
 
Student Buidling Model Hand Calculations  
 
The first exercise for the students was to create a very simple model to capture the building 
behavior, specifically the building fundamental frequency in the short direction.  The purpose of 
this exercise was to get the students to explore the building lateral system on a macro level and 
obtain a ballpark estimate to guide further modeling.  Students have the tendancy to start with far 
too detailed models and often continue to increase the level of complexity.  In doing so, students 
often bypass conceptualizing the basic structural behavior.  As a result, the students have 
difficulty understanding their complex model results; if the students are aware of errors in the 
first place.  This first model created by the students was a single-degree-of-freedom (SDOF) 
“lollipop” model with the total building mass lumped at the roof (see Figure 2) and the stiffness 
based on the shear and flexural stiffness of the cantilever brick shear walls.  The stiffness of the 
nonstructural members was ignored.  This model provided a temporary lower bound for the 
fundamental frequency prediction of 8.9 hz.  Since the shear walls were dominated by shear 
rather than flexure this lower bound prediction is not as conservative as it would be for a lateral 
system that is dominated by flexure such as a moment frame. 
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rigid diaphgram option in ETABS to incorporate the diaphragm flexibility.  The resulting 
fundamental frequency for the their semi-rigid diaphragm computational model was 5.6 Hz.  
This prediction compared very closely with the experimental result of 5.3 Hz.  From this 
comparison the students not only learned a valuable lesson with regards to the modeling of floor 
and roof diaphragms.  They also gained significant insight into the effect of wall and building 
mass modeling on predicted behavior. 
 
Mode Shapes 
 
The next phase of the exercise is to have the students experimentally determine the shape (mode 
shape) the building takes on as it vibrates in its first natural frequency. To accomplish this, the 
students set the shaker running at the building’s first natural frequency and then placed the 
accelerometer at various points down the second story corridor.  A normalized graph of the 
resulting measured accelerations represents the first natural mode shape of the building.  The 
student results for the experimentally derived mode shape are shown in Figure 6 along with their 
results for their rigid and semi-rigid diaphragm models. 
 

 
Figure 6: Mode Shape Comparison 

From Figure 6, the students rightfully concluded that only their semi-rigid diaphragm model 
reasonably captured the behavior of the building.  Their rigid diaphragm model, and by extension 
their hand calculation models results, failed to capture the actual behavior.  This observation is 
well supported by the accuracy of the modal frequency results.  
 
Design Implications 
 
The students came to the conclusion that the rigid diaphragm model permitted in the code1 
produced poor estimates of the building natural frequency and mode shapes.  To put this result in 
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context, the students were asked to determine how or if the modeling decisions could affect the 
design of the building in terms of base shear (total lateral force for which the building must be 
designed), and story drift (movement of the roof relative to the floor).  The students found that 
for any given earthquake, the rigid and semi-rigid diaphragm models could produce large 
variations in base shear.  However, since the design spectrum in the code represents the predicted 
effect of any future earthquake and both models predicted a relatively high natural frequency, 
there was negligible difference in the two base shear values.  Their predicted story drifts were 
under-predicted in the rigid diaphragm models by 200-300%.  However the semi-rigid 
diaphragm model results were still within the limits prescribed by the code. 
 
Conclusions - Lessons Learned 
 
This exercise provided the students with a hands-on learning environment that challenged them 
to apply concepts and techniques from several courses to one practical, real-world case study.  
The process of developing increasingly more detailed computational models and comparing to 
their full-scale testing results imparted a deeper understanding not only of structural behavior but 
also the role of modeling in structural design.  Through the use of physical testing, the students 
were able to observe the predictions of their models and make more intelligent decisions 
regarding the appropriateness of the model.  Armed with their validated model, the students were 
then able to put building code simplifications with respect to floor and roof diaphragms into 
context and understand how the simplifications affect their designs.  When surveyed, the 
students indicated that the exercise had greatly increased their awareness of how modeling 
assumptions affect the final results.  In particular they will be far less accepting of simplified 
building diaphragm modeling for structures sensitive to story drift demand limits.  
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