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Factory 4.0 Toolkit for Smart Manufacturing Training 

Abstract 
 
The rapid pace of technology development in the field of smart manufacturing has left 
educational systems scrambling to keep pace and adapt learning outcomes, resulting in 
inadequate preparedness and readiness of workforce at all levels. Often, smart manufacturing 
training materials are either broad and conceptual or a specific technical deep dive with little 
context. We have developed an educational toolkit that leverages an inexpensive, bench scale 
extrusion platform to provide lab activities and feature-rich data to explore fundamental concepts 
of smart manufacturing in a production context for an audience of both undergraduate 
engineering students and current manufacturing workforce members. Through investigation of 
the mock production platform and associated data, concepts and applications of modern data-
driven tools are explored in the topic areas of data collection and the industrial internet of things, 
data analytics and predictive modeling for production data, simulation and digital twinning, and 
process and manufacturing systems optimization. The activities culminate in the exploration of 
advanced feedback control algorithms and optimization of operating conditions, balancing 
throughput, quality, and power consumption, using digital twins.    
 
The combination of overview conceptual materials along with in-depth activities on an actual 
process allows us to tailor the scope of the specific training to the intended audience. Select 
modules of the Factory 4.0 toolkit were delivered in an undergraduate course and in a training 
workshop for manufacturing personnel. Pre- and post-attitude surveys, along with participant 
comments, were used to assess the training approach and content. We found that the proper 
technical scope is critical for a given audience and that all types of manufacturing personnel, 
from technicians and engineers to operations and management, benefit from foundational smart 
manufacturing concepts and examples. We also found that for technical materials, student 
audiences required more of the fundamental instrumentation and statistical analysis topics, while 
current technical practitioners desired specific deep dives into data analytics, digital twinning, 
and process optimization after introductory overviews. Both educational experiences exposed a 
need for preparedness in programming and statistical analysis software tools to take advantage of 
these smart manufacturing concepts.   
 
Introduction 
 
Manufacturing and industrial process systems are evolving at a relatively rapid pace due to the 
digitalization and data centric transformations occurring in many aspects of the economy [1]. As 
applied to manufacturing, this wave of transformation is generally referred to as Industry 4.0 or 
Smart Manufacturing, and in the U.S. our efforts to modernize manufacturing are less centrally 
led than in other countries [2]. By its very nature, Smart Manufacturing is a data driven, highly 
integrated enterprise, bridging multiple levels within a traditional automation environment and 
the cyber-physical space. The interdisciplinary technology nature of Smart Manufacturing as 
noted in [3] and the business, innovation, and teamwork skills noted by [4] have caused both 
manufacturers and educational institutions to develop new programs to educate the current and 
future workforce. 
 



A learning environment for manufacturing concepts typically uses demonstration equipment and 
processes for hands-on exercises, which can often be expensive. This is exemplified by learning 
factory environments, which allow for an immersive educational experience that demonstrates a 
system-wide enterprise [5][6] or a digital design experience [7]. In addition, Smart 
Manufacturing education further requires data collection and management systems that allow for 
exploration of data analysis and feedback as demonstrated by [8]. In order to provide a relatively 
low-cost training platform for a relatively challenging control problem, D. Kim and B. Anthony 
demonstrated a benchtop fiber extrusion system for educational training [9]. This FibeR 
Extrusion Device, FrED, provided a process that would benefit from complex process control, 
while also being straightforward to analytically model and test. Recently, S. Kim et al. showed 
how deep reinforcement machine learning could even be applied to the feedback control for this 
device for improving fiber quality [10]. These properties of FrED have led to its use in the Smart 
Manufacturing Professional Education program at MIT [11], where statistical process control, 
data-decision thinking, and advanced control techniques are applied to improving machine 
operation. 
 
Our goal was to adapt the FrED system to serve undergraduate engineering education as well as 
add to the learning activities possible with the platform. To accomplish this, activities for 
Internet of Things (IoT), digital twin creation, and digital twin use in the optimization of 
manufacturing process, were developed to create a Factory 4.0 Toolkit. Materials from this 
toolkit were presented to undergraduate students and current workforce members in order to 
assess and organize an overall approach to Smart Manufacturing training. 
 
Course Objectives and Design 
 
Given the broad landscape of technologies and business practices under the umbrella of Smart 
Manufacturing, it is important to scope the topics carefully for curriculum development. In an 
attempt to convey the core concept of data-centric thinking, we decided to focus the Smart 
Manufacturing topics on collecting and using data to develop digital models and improve 
manufacturing processes. This led to the following Factory 4.0 Toolkit overall learning 
objectives: 
 

1. Data Collection - Industrial Internet of Things (IIoT):  Students will be able to 
develop a data collection strategy for industrial networks, including non-traditional 
IoT data streams and cloud-based data storage. 

2. Data Analytics and Predictive Modeling for Production Data:  Students will be able to 
visualize, analyze, and predict relevant production outcomes based on process data. 

3. Simulation - Digital Twinning:  Students will be able to create and use digital twins 
of factory processes. 

4. Process and Manufacturing Systems Optimization:  Students will be able to optimize 
factory processes using digital twins, data analytics, and predictive modeling. 

 
Our goal was to develop educational materials including presentations, videos, and lab materials 
as a general Factory 4.0 Toolkit for both undergraduate students and current workforce members. 
Therefore, the materials were not designed to fit within a specified training plan, such as a 15 
week college course. Instead, we took an approach to develop overall learning objectives and 



subsequent supporting materials, a Factory 4.0 Toolkit, that could be drawn from to create a 
specified training course. The developed materials range from fundamental (definitions and 
concepts) to hands-on activities based on an example manufacturing process, fiber extrusion with 
the FrED system. The topic and activities are organized to support the learning objectives, as 
shown in Table 1, and include 35 slide decks with audio recordings, 12 videos, and 10 lab 
activity guides. 
 

Table 1. Topic Outline of Factory 4.0 Educational Materials 
 

I. Introduction and Overview IV. Digital Twinning 
I.a Factory 4.0 Introduction IV.a Approaches to Digital Twinning 
I.b Smart Manufacturing Essentials IV.L Developing a FrED Analytical Process Model 
I.c Example Extrusion Process – FrED IV.b Data Preparation for Empirical Modeling 

II. Data Collection IV.bL FrED Data Preparation for Empirical 
Modeling 

II.a IIoT Fundamentals IV.c Introduction to Machine Learning 
II.b IoT Retrofitting IV.cL FrED Machine Learning to Develop Time-

Invariant Models 
II.bL Adding Power Monitors to FrED IV.d Developing Time-Variant Models 
II.c Fundamentals of Data Acquisition IV.dL FrED Time-Variant Heater Modeling 
II.d Data Communication Protocols IV.e Packaging and using Digital Twins 
II.dL FrED Data Communication and Collection IV.eL Packaging and Deploying FrED Digital Twin 

Models 
II.e Data Integration V. Process Control Optimization 
II.f Cloud Storage V.a Optimizing Process Control 

III. Data Analytics for Production Data V.aL FrED Process Control Optimization 
III.a Statistical Exploration V.b Using a Neural Network Time-Variant 

model with Feed Forward Process Control 
III.aL FrED Statistical Exploration VI. Manufacturing Systems Optimization 
III.aSup Python for Engineers VI.a Multi-Objective Optimization using Digital 

Twins 
III.b Data Visualization VI.aL FrED Optimization of Run Conditions 
III.c Data Contextualization VI.b Digital Twin Assisted Process Monitoring 
III.cL FrED Data Visualization and 
Contextualization 

VI.bL FrED Smart Monitoring 

 VI.c Digital Twin Assisted Scheduling 
 
The FrED system, as noted above and shown below in Figure 1, provides a benchtop-style, 
relatively inexpensive platform for running the learning activities. The philosophy of using FrED 
within the Factory 4.0 Toolkit is to improve and explore the fiber extrusion process by 
retrofitting sensors and improving the process through data learning and modeling. This provides 
a relevant learning platform not only for students, but also for current industry participants 
dealing with upgrading legacy equipment and developing data-centric processes in their 
facilities. 
 



 
Figure 1. FrED benchtop extrusion system showing the control Programmable Logic Controller 

(PLC) with Human Machine Interface (HMI) and a PC running a FrED Digital Twin. 
 
A critical component in running the activities in the Factory 4.0 toolkit is the data information 
network. Figure 2 shows the overall architecture of the data flow and the interconnected devices. 
The FrED system is controlled locally with a PLC (microcontroller and PC control is optional). 
A centralized Data Server PC handles the data communication through the network and can be 
run simply with an MQTT Broker or optionally with an OPC UA Server for a more industrially 
relevant setup. The Data Sever PC is also setup with a Node-RED dashboard for Smart 
Monitoring and programs to log data in data files or through a historian database. The power 
monitoring sensors added to FrED communicate directly with the Data Server to mimic sensor 
retrofitting using an IoT style configuration, where the data is not collected at the PLC level but 
transmitted directly to the information network. The Digital Twin PC is setup with python 
programs that run a FrED digital twin and advanced control algorithms that can be used to 
control FrED, bypassing the PLC control algorithms. All of the data generated by FrED and the 
FrED Digital Twin are accessible by Trainee PCs on the network. This allows trainees to analyze 
data, create their own dashboards, and perform modeling and machine learning using Excel, 
python or MATLAB®. A GitHub repository (jcuiffi/pyhton-fred) contains the software used to 
setup the Factory 4.0 Toolkit along with sample data and data analysis scripts that align with the 
learning activities.  
 



 
Figure 2. Factory 4.0 data flow architecture showing a central data server (MQTT or OPC UA) 
communicating with the control system, add-on sensors, a Digital Twin PC, and any number of 

Trainee PCs. 
 

Course and Workshop Demonstrations 
 
Factory 4.0 materials were presented to two different audiences, undergraduate students and 
current manufacturing workforce members. The undergraduate demonstration was part of a 
Smart Manufacturing senior technical elective in an EMET (Electro-Mechanical Engineering 
Technology) program. EMET students are trained in automation engineering, and therefore, have 
a background in automation and control systems, with exposure to programming 
microcontrollers and PLCs, as well as basic data acquisition and analysis techniques. Ten 
students participated and were provided pre- and post-surveys as part of the class, and although 
this was a small initial sample size, there was value in assessing student interest in the exercises 
and materials.  
 
The undergraduate course focused initially on gathering and collecting data with an internet of 
things style network. The students programmed microcontrollers to collect environmental data 
(ambient temperature, pressure, and humidity), and through MQTT and Node-RED, created 
dashboards and explored fundamentals in data collection and aggregation. This led to the 
introduction of FrED and adding power (current) monitors as a retrofit. The class exercises then 
focused on learning about FrED through analytical modeling and visualizing the data in Excel 
and MATLAB® (for complex plotting). The students were then led through developing more 
complex empirical models of FrED, starting with Excel and then moving to python 
demonstrations for data preparation, regression and machine learning. Although aspects of the 



data analysis and preparation were able to be performed with the students, more advanced data 
analysis with python was more demonstrative than interactive. The students were then shown 
how the models were used to build the FrED Digital Twin, which they could then interact with. 
The Digital Twin was used to demonstrate the power of multi-objective optimization, leading 
them through an exercise to balance fiber quality against energy consumption and cost with the 
digital model. Finally, a Smart Monitor activity was demonstrated to show how the Digital Twin 
can be used to compare against the physical process to detect anomalies. 
 
Overall, the students were engaged with the material and found it relevant to their upcoming 
career. The post-training perception of the topics in relation to their career is shown below in 
Figure 3a. The average student change in perception is shown in Figure 3b. The post training 
data indicates that all of the topics appeared to be relevant to the students for their career. 
Artificial intelligence scored the least relevant, perhaps due to the approach taken to describe 
machine learning or the intimidation of the complexity of implementation with advanced 
computer programming. In the change in perception results, it was interesting and promising to 
see that Data Contextualization, providing meaning to data, rose to the top. This is a key learning 
activity for the course, where we are trying to stress data understanding and decision making. 
 

 
Figure 3. a) (left) Student final perception of the topics in relation to their career. b) (right) 

Average student change in perception. Each student’s perception change was quantified and then 
averaged per topic. Scale: 4 – Very Important, 3 – Important, 2 – Slightly Important, 1 – Not 

Important. 
 
For the current workforce manufacturer training, we held four sessions (2hrs each, 8 hours total) 
for 18 employees from local companies. The goal was to present overviews of Smart 
Manufacturing topics as well as deeper-dive demonstrations to showcase the possibilities of 
modern data collection and modeling. The mix of participants was interesting and reflected the 
interdisciplinary training needed to implement Smart Manufacturing techniques. Out of 15 that 
responded, 2 were in business operations, 4 were in engineering, 3 were in technical 
management, 2 were technicians, and 4 were in Information Technology. Their prior exposure to 
Smart Manufacturing also varied, as shown in Figure 4a. 



 
The training focused initially on Smart Manufacturing definitions and then used the FrED 
example to walk the participants through advanced data collection, data analysis, and simulations 
to improve the process. All of the materials were simply demonstrated given the time constraints. 
The overviews and demonstrations appeared to resonate well with the audience, and post-
training surveys indicated improved interest in pursuing Smart Manufacturing, see Figure 4b. 
 

 
Figure 4. a) (left) Incoming participant Smart Manufacturing familiarity. b) (right) Post-training 

interest in exploring Smart Manufacturing further. 
 
Recommendations and Conclusions 
 
The integration of Smart Manufacturing topics in manufacturing education will continue to 
grow. The Factory 4.0 Toolkit demonstrations provided useful information as we develop the 
materials further for our programs. For dissemination, the materials described here are now 
available through CESMII – The Smart Manufacturing Institute (cesmii.org), which sponsored 
the effort. We note that other manufacturing processes, beyond the extrusion system that we used 
in our demonstration, can be adapted to present these materials and run hands-on exercises. 
Time-series data is important for presenting several concepts, so any type of continuous 
production process would be appropriate according to the machine availability at a given 
program. The data collection and analysis processes, which are at the core of the learning 
objectives, are relevant for many various production processes, both continuous and batch. In 
addition, the use of more industrial controllers (PLCs) and historians is also optional, as many of 
the data acquisition and control functions can be done with more educationally friendly systems, 
such as with microcontrollers or LabVIEW. 
 
Regarding undergraduate education, the technical materials must be adjusted to student 
competencies, but the exposure to data-centric thinking and Smart Manufacturing concepts 
applies to all students. For the IoT exercises, which appear to be popular amongst students, a 
basic electrical background as well as exposure to microcontrollers are helpful, but not 
necessary. It is relatively easy to walk the participants through these types of exercises due to the 
ease of the Arduino platform and simplicity of the Node-RED environment. Most upper level 
industrial or manufacturing related engineering students have the electro-mechanical and 
automation background to explore the data generated from a production process. The data 



exercises require that the students are comfortable with Excel and basic statistical concepts. 
MATLAB® or python experience is preferable for the data visualization exercises. For our 
EMET undergraduates, the data processing and machine learning exercises are best 
demonstrated, as the programming skills and complexity of machine learning algorithms beyond 
regression are challenging. The culmination of using the Digital Twin to optimize and monitor 
processes is a great summary of the material and appears to bring the practicality of the concepts 
full circle. 
 
The industry pilot was interesting and helped to scope future training. We were excited and 
surprised to see the variety of occupations represented. It was clear from the training that the 
introductory materials were useful to all the participants. It was, however, difficult to transition 
to more in-depth technical topics without losing interest of the less-engineering focused 
participants. In contrast to the student exercises, the participants here responded well to process 
improvement and overall systems topics more relevant to improving their manufacturing 
processes. The basic topics relating to data collection and aggregation were not as useful. These 
observations point to a strategy of starting with overview topics for all levels of occupations, 
then offering more in-depth technical topic coverage where applicable. 
 
For all technical audiences, we note that Smart Manufacturing requires that engineers continue to 
develop data analysis tools as part of their skillset. As digital information becomes the key for 
driving process improvements, as it has in many other industries, manufacturing engineers need 
to keep up with modern data science tools and the programming environments to use them. We 
hope that the Factory 4.0 Toolkit helps to support undergraduate student exposure to these 
technologies and to provide learning experience for practicing engineers to improve and upgrade 
their current processes. 
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