
AC 2007-1924: FIXED-POINT DSP IMPLEMENTATION: ADVANCED SIGNAL
PROCESSING TOPICS AND CONCEPTUAL LEARNING

Wayne Padgett, Rose-Hulman Institute of Technology
Wayne T. Padgett received his Ph.D. from Georgia Institute of Technology in 1994. He has been
teaching digital signal processing and related courses at Rose-Hulman Institute of Technology for
12 years. He is a member of ASEE, a senior member of the IEEE, and is on the IEEE Signal
Processing Society’s Technical Committee on Signal Processing Education.

© American Society for Engineering Education, 2007

P
age 12.752.1

Fixed-Point DSP Implementation: Advanced Signal Processing

Topics and Conceptual Learning

Abstract

In this paper a description of a unique fixed point systems course, including a list of topics, a

description of labs, and a discussion of the focus on a course project. The course has run four

times using simulation environments to promote analysis and visualization. The content of the

course has made it apparent that there are numerous linkages to advanced signal processing

topics, and these are described. The course has also led to the initiation of an educational

experiment using the Signals and Systems Concept Inventory (SSCI) to measure how two very

different electives affect student understanding of basic concepts. The experiment compares the

fixed point course which is very lab oriented, to a theoretical elective. Preliminary results are

described. Work to develop a course text and lab materials is described as part of an effort to

promote the adoption of fixed point material widely in electrical and computer engineering

curricula.

Introduction

Fixed-point implementation issues in digital signal processing (DSP) are not widely taught or

deeply covered in most U.S. undergraduate (or graduate) curricula. There seems to be a

perception among faculty that fixed-point implementation is difficult to tie to theory, and not

important for advanced work in the field. However, the author’s experiences show that industrial

practitioners rely heavily on fixed-point implementation skills, and that many opportunities exist

to link a fixed-point implementation course to advanced signal processing topics. The author has

taught a fixed-point system design course four times, and each time the need to draw on

advanced topics has become more obvious.

Course Description

The course is called DSP System Design, not Fixed-Point Algorithm Development, because the

only way to give students adequate experience with the tradeoffs and performance issues

involved is to build the course around a project. Learning to measure, specify, and adjust the

system’s performance is a critical element of the course, and it drives the students to deepen their

understanding of the fixed-point effects. Although many possible projects could serve well, the

course has been based on an SSB communication system which takes input speech at an 8 kHz

sample rate and then raises the sample rate to 96 kHz (12x) for SSB modulation at 40 kHz

(actually four channels are implemented eventually). The receiver removes out of band

interference, demodulates the signal, and then reduces the sample rate back to 8 kHz. The basic

design is then extended to operate at four channel frequencies with minimal inter-channel

interference, and subject to various (conflicting) performance criteria such as speech quality,

SNR, and computational complexity.

In the past three offerings, all of the course project work has been done in MATLAB, primarily

using the Fixed Point Toolbox functions. All of the fixed-point system development is done as

P
age 12.752.2

simulation in MATLAB with no hardware-specific restrictions other than the assumptions of 16

bit registers and 32 bit accumulators. It would be nice to extend the implementation further into

a hardware platform, but this material is yet to be developed, and may prove to be too much

content for a ten week term.

When the course was originally conceived, the author reviewed many texts
1
 and finally used

Ifeachor
2
 in the first offering because of its emphasis on implementation, but because the

students and the instructor use Oppenheim
3
 in the graduate DSP course (ECE580), it was usually

easier to reference review material in Oppenheim rather than Ifeachor. As a result, Oppenheim

has been used in subsequent offerings, which is popular with students since they need only one

text for both courses. However, Oppenheim is not an ideal text for the course either, because it

is not intended as a text on implementation, and it does not offer support for the system

performance aspect of the course.

Weekly Topics

Rose-Hulman operates on ten week terms. The main topics of the course are shown below for

each week of the term. The ordering of the topics is intended to deliver the necessary information

“just in time” to allow the students to progress in their implementation of the labs leading up to

the SSB system project.

• Introduction and filter structure review

• Binary arithmetic, quantization noise, and overview of fixed-point effects

• Coefficient quantization, signal to noise ratio (SNR), roundoff noise, filtering random

processes

• Overflow, scaling, examination of MATLAB’s implementation of scaling for second

order sections

• Single sideband modulation, Hilbert transform, single sideband receiver with interference

• Implementation of Hilbert transform (1 filter + delay, 2 filters, infinite impulse response

(IIR)), upsampling and downsampling

• Polyphase, staged interpolation

• Sinsusoid generation (table, oscillator)

• Estimating power spectral density, hardware implementation issues (processor

specialization, field programmable gate array (FPGA) vs processor, architecture vs

algorithm, cost, power, yield)

• Project time

“Just in time” delivery of the course topics is important to enhance the students’ sense of the

practicality of the material. Students tend to be motivated to take this course because they see it

as useful in the “real world,” and their positive impression is strengthened by immediately

putting each topic to use in lab.

Labs

The lab topics are also focused on building up the skills and understanding necessary to succeed

in doing the project. Because the first lab session normally occurs after just two days of class,

P
age 12.752.3

and because the students are often unfamiliar with the debugging and object-oriented features in

LabVIEW, the first lab is intended to bring all the students to a minimum level of competency in

using the debugging features, and in manipulating the filter and fixed-point tools used in

LabVIEW. The next six labs seek to match simulations with actual fixed-point filters and signals

with the theoretical material covered in class. The first seven labs are done individually, to

ensure that all students become competent with the Fixed Point Toolbox. The later labs are done

in groups of two.

In each of the theory comparison labs, care must be taken to isolate the effects of a particular

source of error from other types of error so that accurate comparisons with the theory can be

made. For example, when measuring roundoff noise it is important to use quantized coefficients

in the floating point reference system so that the effects of both roundoff noise and coefficient

quantization are not combined.

Lab 8 is really a prologue to the project. The students are given a working implementation of an

SSB system in floating point LabVIEW code, and they must convert to fixed-point, and make

measurements of SNR and computational complexity. The actual project involves not just

getting the system working, but optimizing according to performance criteria. The system is

extended to operate at four different frequency channels, and measurements of inter-channel

interference are included. These performance measures require the students to examine various

implementations to see which perform best and which minimize computational cost. The critical

element of the project is that it exposes students to real tradeoffs and constraints in a way that

that is significant to them (their grade is effected). The final lab time is used for a wrap up

session. The purpose of this session is to help all the groups benefit from the lessons learned by

each group. Each team has a chance to share their intuition and see how their results compare in

performance and hours logged from a comparison chart.

• Lab 1 – LabVIEW Tutorial

• Lab 2 – Second Order Sections

• Lab 3 – Quantization Noise

• Lab 4 – Integer Computation

• Lab 5 – Coefficient Quantization

• Lab 6 – Roundoff Noise

• Lab 7 – Scaling and Overflow

• Lab 8 – Fixed Point SSB

• Project – Optimized Multichannel SSB System (2 weeks)

• Wrap up Session

Advanced Topics

As noted above, the discussion of fixed point effects must address a number of the advanced

topics surrounding signal processing. Several of these topics are not part of a typical signal

processing course, and so the fixed-point emphasis becomes a link to multidisciplinary material.

Fixed point implementation has been accused of being a collection of ad-hoc topics that are

impossible to generalize, but the truth is that the difficult issues that arise are opportunities to

expose students to topics in mathematical modeling, applications of random processes, etc.

P
age 12.752.4

Random Processes

Random processes are useful models for both signals and noise, and are important in

communication systems courses as well as upper level DSP courses. In a fixed point

implementation course, random processes are explicit in the approximate linear analysis of

quantization noise, both in signal quantization and in the roundoff error introduced in most

arithmetic. It is impossible to discuss roundoff error without some analysis of the filtering of

random processes, usually not only determining output power but also power spectral density.

The task of calculating SNR for fixed point systems (when the source of noise is quantization

error) is critical to developing performance specifications, and it requires a clear understanding

of filtering random processes.

Statistical Modeling

Even in the simplest demonstration of how quantization can be modeled as uniform distributed

noise, the accuracy of the approximation becomes an issue. If the signal to be quantized is

periodic, then the error may also be, resulting in a discrete distribution of errors. If the

quantization levels are large, as may be the case for a “simple” demo, the error distribution may

not be uniform. The distribution of quantization noise at the output of a filter is neither uniform

nor Gaussian, but if we wish to estimate probabilities of overflow, we need an estimate of the

cumulative density function. This exercise requires a substantial understanding of probability

theory for an undergraduate, but it makes an excellent application to justify the need for these

modeling techniques.

Filter Structures

In an introductory DSP course taught assuming ideal precision, introducing various filter

structures can seem quite pointless to students. After all, they are all designed to achieve

identical results. The reason for considering most alternative structures (speech modeling

applications are an exception) is the need for minimizing coefficient quantization error, and

sometimes overflow and roundoff error effects. It is no coincidence that these are the three main

sources of fixed point error. The study of alternative filter structures is rather empty without

including the analysis of the precision effects. In floating point, there is no reason to choose the

increased complexity of an alternative structure, and in the minds of students, no reason to learn

about them.

Coefficient Sensitivity Analysis

Students who discover the purpose of various alternative filter structures will eventually need to

determine which structure best suits the needs of a particular application. Often it is possible to

analyze a filter structure and determine via partial derivatives the sensitivity of the frequency

response to variations in each coefficient. The predictive power of this technique (well known in

analog electronics where component variation is the problem) can allow a designer to choose a

filter structure with the maximum accuracy of a desired parameter at minimal coefficient

precision.

P
age 12.752.5

A related issue is the relative accuracy requirements of different filter design methods. A filter

design based on the Butterworth method may result in poles farther from the unit circle and less

need for coefficient accuracy than a lower order filter based on an elliptic method. These effects

are not too difficult to predict with some intuition about filter design methods and coefficient

sensitivity.

Numerical Analysis

Students in signal processing courses are often completely unaware of the limitations of

precision in most computer arithmetic. Because floating point calculations (such as the 64 bit

“double” in LabVIEW) are treated as unquantized, it can be a shock to realize that errors are

introduced in almost every calculation, and that if an algorithm is sufficiently sensitive to such

errors, the results can be useless.

A simple example of the small errors introduced in a frequency domain convolution is enough to

motivate the concept of “machine epsilon” for the arithmetic system in use, and show that the

study of numerical sensitivity is a very important discipline with a strong relationship to signal

processing. A related topic appears in the discussion of various rounding methods meant to

prevent the accumulation of error in iterative algorithms.

Computer Architecture

The entire purpose of discussing fixed point systems is based on their relative advantages over

floating point hardware. These advantages can be summarized in terms of cost and power. Both

factors depend largely on silicon area, which is intimately tied to the architecture of the entire

system. A major advantage of fixed point systems is that the data can usually be squeezed into

16 bit words (or less) instead of the 32 bit words required for floating point. The resulting

savings in bus sizes and memory sizes has a dramatic impact on the system’s cost and power.

Another key point that can be easily introduced in the discussion of fixed point algorithms is the

need to optimize the hardware and the algorithm jointly. This becomes painfully obvious when

analysis calls for a 17 bit quantity on a processor that only supports 16 bit data. Students with a

thorough knowledge of fixed point effects have some hope of being able to adjust the algorithm

to reduce the precision required in one quantity, perhaps at the expense of others where extra

precision is available.

Phase Noise

The communication system at the center of the course described above requires a local oscillator.

A significant portion of the course is devoted to various methods of generating sinusoidal signals

efficiently, and the types of noise produced by each. Since the noise in the oscillator signal is a

significant performance limitation for the system, students need to understand the sources of

frequency error, amplitude noise, and phase noise, so that they can evaluate the advantages and

disadvantages of digital oscillators and lookup tables (numerically controlled oscillators). Almost P
age 12.752.6

all of these noise sources are due to quantization effects and could not easily be discussed in a

course without a fixed-point component.

Polyphase Implementation

Polyphase implementation is not a strictly fixed point topic, but it is unavoidable when making

comparisons of system computational cost as a performance specification. The system used for

the course project is a multirate system, and therefore polyphase filter implementation not only

reduces the computational cost of the system, but by allowing FIR filters to be practical, it

reduces the scaling problems associated with the high order IIR filters that are replaced with

polyphase filters.

Simulation

Most fixed point implementation material is tightly focused on specific hardware – either a

particular processor or a particular FPGA. This situation has led to the impression that fixed

point issues can only be taught at either a very shallow level, or with very specific hardware. In

an academia, we prefer to teach material that is easy to generalize, and this impression has led

many to avoid fixed point topics entirely. However, with good simulation tools, there is no need

to give up a general view of the issues even if a specific hardware example is used for

motivation. Both MATLAB and LabVIEW have excellent fixed point simulation and analysis

tools available, and both have products designed to target processors and FPGAs in an automated

fashion. The course described above has been run using both MATLAB and LabVIEW tools for

simulation, and only minimal hardware implementation. Students have gained the sense of a

realistic implementation, and the lecture material has remained quite general although focused on

processor issues more than FPGA implementation issues. Of course, there are both advantages

and disadvantages to depending almost entirely on a simulation environment in this course.

Pros

A primary benefit of simulation tools and their development environment is the presence of

powerful analysis, visualization, and debugging tools. In a simulation environment, it is not

difficult to log overflows, or collect statistics on data, or even to plot histograms of error values,

and compare the fixed point output to floating point results. In most cases, the floating point

results can be treated as “ideal” and so signal can be separated from quantization and other

errors. This approach allows the validation of the theoretical predictions discussed in class.

If we wish to explore the effects of different configurations of precision such as reduced word

lengths for FPGA simulation, or increasing the precision of a portion of the algorithm to 32 bit

data, the simulation tools can easily be reconfigured to reflect the changes, and all the analysis

tools still apply.

The use of simulation tools teaches good habits in system development. Students can develop

and debug their algorithms in floating point, then simulate the results in fixed point and resolve

any precision issues before starting any hardware implementation.

P
age 12.752.7

Cons

There are two major problems with using a simulation environment. The first is that students

have a strong interest in practical applications, and restricting them to a simulation environment

makes the course seem less “real,” and therefore less motivational. The second is that simulating

fixed point in a general framework requires a great deal of overhead so that simulations are far

from real time and in fact require some strategies for minimizing testing time. Here, hardware

platforms have a distinct advantage, in that they can implement the system at high speed, and

even make real time demos possible, even if their debugging and analysis capabilities are much

weaker.

Ideally, a fixed point course could cover the entire development process, starting with simulation

and then after the project had been successfully designed and tested, moving on to a specific

hardware implementation. Perhaps a comparison of processors and FPGAs could be

implemented by having parts of the class use different implementation platforms, or even

partition the design between the two. Unfortunately, such a complete version of the material has

not yet been offered, and may not be practical in a ten week term.

Conceptual Learning Experiment

In the process of developing this course, the question was posed, “how will it affect student

understanding of fundamental concepts?” The question of how this hands-on course would

compare with a more theoretical course was also raised. Fortunately, a tool exists for measuring

student understanding of fundamental signal processing concepts. It is called the Signals and

Systems Concept Inventory (SSCI){cite} and it is available both in a continuous time (CT) and

discrete time (DT) version. Since this test was already in use in the prerequisite DSP course, it

seemed convenient to begin an experiment to determine the comparative effects of two electives

on SSCI scores.

The two courses involved are ECE497 DSP System Design, and ECE580 Digital Signal

Processing. Although ECE580 is a graduate level course, it is populated by many of the same

students who take ECE497. The concept inventory uses a pretest and posttest model to measure

how much students have improved during the course. This experiment is apparently the first use

of the SSCI to examine elective effects on student learning. Because posttest data is available

from the introductory (and prerequisite) course ECE380 Intro to DSP, it is possible to see that

students begin to lose familiarity with the material by the time they take the pretest in an elective

course.

P
age 12.752.8

1 2 3 4 5 6 7 8

16

17

18

19

20

21

22
R

a
w

 S
S

C
I-

D
T

 S
c
o
re

 (
m

a
x
 2

5
)

Comparison of SSCI Changes Over Time

ECE380 0405 ECE380 0506 ECE497 Fa0607 ECE580 Wi0607

ECE380 0405 (N = 5)

ECE380 0506 (N = 18)

ECE497 Fa0607 (N = 14)

ECE580 Wi0607 (N = 8)

ECE380 0506 to ECE497 (N = 11)

ECE497 to ECE580 (N = 7)

ECE380 0506 to ECE580 (N = 12)

ECE380 0405 to ECE497 (N = 3)

ECE380 0405 to ECE580 (N = 4)

Fig. 1 – Average SSCI scores usually improve during a course and decline in between courses.

Fig. 1 shows how the average SSCI scores varied over time. Average scores for students who

took two tests consecutively are shown. Since the students took the three courses in many

combinations, the number of students in each group varies, and is shown in the legend as N. The

line weights also reflect the value of N.

Some of the results in Fig. 1 are just as expected, such as, SSCI scores always increase during a

course; scores increase more during the signals and systems course than during the electives; and

scores tend to decrease in between courses. It is somewhat surprising that two groups of students

increased their scores between courses: those taking ECE580 immediately after finishing

ECE497, and those taking ECE580 after completing ECE380 the previous year. It seems

significant that the group taking ECE497 starts and finishes with lower scores than the group

taking ECE380 even though several took both courses (see Fig. 2 for more detail). The gain

computation described below will magnify the difference between the ECE497 and the ECE580

groups even though their absolute change in scores is very similar.

It is only possible to speculate about why students may have increased their scores between

courses. Some possible explanations might include reduced stress during the pre-test since the

post-test is part of the final exam, or material learned in other courses during an intervening term.

Another explanation could be greater familiarity with the SSCI test questions, since the pre-test

in ECE580 would be the fifth attempt for students who took ECE497.

Wage uses a gain computation to express how much the students learned as a percentage of what

they did not already know. Here, the gain is computed as

P
age 12.752.9

pre

prepost
gain

−

−
=

25

where 25 is the maximum test score, and average scores are used for each pre and post test. In

discussions of this data with Wage, the need for a useful formula reflecting the loss became

apparent, since gain is difficult to interpret when negative. For the purposes of this experiment,

loss is defined as

earlier

earlierlater
loss

−
=

where the resulting negative fraction can be interpreted as how much of what the students once

knew that has been forgotten. The terms “later” and “earlier” are used because the later test is

the pretest, and the earlier test is the posttest in cases where loss occurs between courses.

Table 1 shows the gains calculated for the successive tests shown in Fig. 1. Positive gains are

recorded during the courses, and a loss is shown for the periods where scores dropped. Although

it is clear that the ECE580 students finished with a higher average than the ECE497 students, the

sample size is small in this preliminary experiment, and a data collection error resulted in only

volunteers taking the ECE580 post-test which may also have biased the results somewhat.

Fortunately, the ECE580 pre-test results are for the entire class, and the high value of their

average suggests that stronger students took ECE580 than ECE497.

First Second N 1
st
 average 2

nd
 average gain loss

1 2 5 16.40 21.80 0.63

3 4 18 16.06 20.11 0.453

5 6 14 18.21 19.57 0.20

7 8 8 20.38 21.75 0.30

4 5 11 20.64 18.82 -0.09

6 7 7 19.71 20.14 0.08

4 7 12 20.17 20.50 0.07

2 5 3 21.33 16.00 -0.25

2 7 4 21.75 19.75 -0.09

Table 1 – Gains and losses in SSCI scores

P
age 12.752.10

1 2 3 4 5 6 7 8
15

16

17

18

19

20

21

22

23

R
a
w

 S
S

C
I-

D
T

 S
c
o
re

 (
m

a
x
 2

5
)

Comparison of SSCI Student Groups Over Time

ECE380 0405 ECE380 0506 ECE497 Fa0607 ECE580 Wi0607

ECE380 0405, ECE497 only (N = 3)

ECE380 0506, ECE497 only (N = 6)

ECE380 0506, both (N = 4)

ECE380 0506, ECE580 only (N = 3)

All ECE497 only (N = 7)

All ECE580 only (N = 4)

Fig. 2 – SSCI scores grouped by students who took similar paths through the signal processing

electives.

Fig. 2 shows the scores of similar groups of students varied over time. The first four lines shown

in the legend are of students who took exactly the same sequence of tests, while the last ignore

the year in which ECE380 was taken to create larger groups for comparison. In this figure, it is

clear that the groups experienced very different results during ECE497. The group that took

ECE380 during the 04/05 academic year seems to have lost all familiarity with signals during the

intervening year, but recovered dramatically, while the group that took both ECE497 and

ECE580 actually declined in SSCI score during ECE497 and then rebounded over the two-week

quarter break, and finally exceeded their ECE380 average by the end of ECE580. The group that

only took ECE580 was apparently very strong in ECE380, but never recovered their high

average scores even after ECE580. These wide variations in results seem to suggest that the

sample size is too small to be useful.

Future Work

A number of efforts are underway to enhance the effectiveness of the ECE497 course. A

textbook is under development which will support the theoretical core of the fixed point material

as well as incorporating a set of homework problems and example labs. The planned text outline

will include material emphasizing both processor and FPGA implementation. The intent of the

text is to allow faculty with minimal expertise in fixed point to offer this material in an elective

course. Schools interested in using a draft of the text will be considered as “beta testers.” As

noted in the list of advance topics above, great potential exists to expand the planned textbook to

include material on many related areas.

The dataset size for the SSCI elective experiment is too small to make significant

generalizations, and schools interested in collecting this data over a larger population would be

P
age 12.752.11

welcome to participate. As data is collected over several years for multiple schools the results

should be more useful and consistent.

Conclusions

Fixed point implementation is a topic that is drastically underserved in electrical and computer

engineering programs across the U.S. It is a topic with an undeserved reputation as being too

specific to individual hardware platforms. In reality, the core topics can be taught at a very

general level using a system design context, and with or without reference to specific hardware.

Industry demand is evident for this material since the vast majority of DSP processor and FPGA

designs are implemented using fixed point arithmetic. As noted above, fixed point algorithm

development is an excellent entry point to many advanced topics and deserves to be emphasized

much more in undergraduate curricula than it currently is. The solution to this problem is a wider

acceptance of the topic as a DSP elective, and the development of text and lab materials to

support the resulting courses.

As educational research data is gathered on DSP electives, it will become more apparent not only

how various electives reinforce basic concepts, but also which basic concepts are most used in

upper level courses and therefore deserve greater emphasis.

Bibliography

1. Padgett, W.T., “An Undergraduate Fixed Point DSP Course,” Proceedings of the 2
nd

 IEEE Signal Processing

Education Workshop, Oct. 2002, Pine Mountain, GA, pp. 302-305.

2. Ifeachor, E.C. and Jervis, B.W., Digital Signal Processing. A Practical Approach, Addison Wesley Publishing

Company, 1995.

3. Oppenheim, A.V., Schafer, R.W., and Buck, J.R., Discrete-Time Signal Processing, 2nd ed. Upper Saddle

River, NJ: Prentice Hall, 1999.

4. Wage, K.E.; Buck, J.R.; Wright, C.H.G.; Welch, T.B., “The Signals and Systems Concept Inventory, IEEE

Transactions on Education, vol. 48, no. 3, Aug. 2005, pp. 448 – 461.

5. Padgett, W.T., “Teaching Fixed-point Algorithm Development in a Systems Context,” Proceedings of the 12
th

Digital Signal Processing Workshop and 4
th

 Signal Processing Education Workshop, Sept. 2006, Jackson Hole,

WY, pp. 297-301.

P
age 12.752.12

