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Abstract 
 
According to the existing studies, the historical climate record and seasonal temperature and 
precipitation records offer useful input for making short-term drought predictions. In the last few 
decades, numerous studies have been conducted to explore these data in a way to predict 
upcoming drought events. Despite the efforts, few studies have succeeded in quantifying 
uncertainties in the process of predicting drought index values due mainly to technical challenges 
and implications in computation. This paper proposes a new approach utilizing an artificial 
intelligence model for forecasting drought indices. This study uses a regression analysis model in 
machine learning, Lasso, which is normalized to improve the prediction accuracy. Lasso model 
will be implemented in Python using scikit-learn, and 10-fold cross-validation will be used to 
ensure the prediction accuracy. The proposed model uses the National Oceanic and Atmospheric 
Administration (NOAA) Climate Prediction Center (CPC) seasonal data to compute the Palmer 
Drought Severity Index (PDSI). The accuracy of the model is validated using the historical 
records of drought indices and available seasonal temperature and precipitation data provided by 
the NOAA CPC. The results of the forecasts produced by this model will be compared with the 
observed drought indices and validated. The mean error rate and root mean square error (RMSE) 
methods are used to measure the accuracy of the forecast at stations for validation. The validated 
model can be used in classroom and laboratory settings for general engineering studies.  
 
1. Introduction 
 
Drought is a part of the natural variability consists of various hydrologic interactions such as 
precipitation, evaporation, soil moisture, and groundwater level that are challenging to predict in 
advance. The major importance in the mitigation of drought impact is the effective methods for 
forecasting key features of drought events. Agriculture, environmental, and societal impact of 
drought has long been discussed within the climate and hydrologic communities [1], [2]. 
Intensified climate variability and increasing frequency of extreme climate events make the 
drought mitigation even more challenging [3]. 
  
While various drought mitigation strategies are explored and discussed, the first step is to utilize 
a good objective measure to understand the drought onset and progression for water resource 
decision-makers. Therefore, the analysis and forecast of the drought indices are possible. Among 
many other drought monitoring methods, Palmer Drought Severity Index (PDSI), Crop Moisture 
Index (CMI), and Standard Precipitation Index (SPI) are among many popularly used measures 
as stand-alone drought indices. US Drought Monitor is another effective and comprehensive 
approach to provide quantitative and visual information to all water users 
(https://droughtmonitor.unl.edu/). PDSI is the first comprehensive drought index developed to 
explain drought stages that impact agriculture using precipitation and temperature to estimate 
moisture supply and demand. The original idea was developed by Palmer [4], and some related 
indices have been derived. As a monthly time series, PDSI calculates the regionally standardized 
drought severity by comparing recent climate conditions and long-term averaged conditions and 
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is arguably the most important drought monitoring index for the spatial and temporal 
completeness. 
 
Drought forecasts rely on a variety of methods. Yevjevich [5] introduced run theory that led to 
subsequent research developments until autoregressive (AR) model studies have become also 
very popular, e.g., Rao and Padmanabhan [6] studied PDSI forecasting. Stochastic model 
predictions, such as the Markov chain model, has been extensively studied [7]. For instance, 
nonparametric techniques [8] improved computing capabilities, which have many other hybrid 
applications. Data-driven techniques and machine learning approaches are among the recent 
developments in drought forecasts. Other researches have been pursued to provide probabilistic 
forecasts to explain uncertainties in the natural climate processes. Ensemble forecasts have been 
tried based on Monte Carlo, Bayesian technique, and the AR model. The simple conditional re-
sampling technique has been tested by Hwang and Carbone [9] to properly explain natural 
variability with the help of the Climate Prediction Center (CPC) outlook and current 
temperature-precipitation condition. 
 
2. Machine Learning Algorithms 
 
Machine Learning (ML) is recently adopted in many different fields of application, such as 
finance, medical and healthcare, life science, security, automobile, etc. These wide applications 
are due mainly to its continuous evolution from experience. In ML, there are two subsets, 
supervised learning and unsupervised learning. Supervised learning uses the set of labeled data to 
train the model for the prediction, while unsupervised learning uses the set of non-labeled data. 
Due to this nature, supervised learning is being used to estimate or predict the value from known 
data patterns and mainly used for regression or classification in many applications, such as 
weather forecast, email filtering, Intrusion Detection System (IDS), etc. [10] - [13]. 
Unsupervised Learning is good for data with unknown patterns and mainly used for clustering or 
grouping the data in applications of market segmentation, social network analysis, organizing 
computer clusters, etc. [14], [15]. While ML has been widely adapted and being applied in many 
areas of study, it has not been actively adapted and implemented in the biomass energy field of 
study. Ozbas and et al. [16] compared four ML models, Linear Regression (LR), K Nearest 
Neighbors (KNN) Regression, Support Vector Regression (SVR), and Decision Tree Regression 
(DTR), to predict hydrogen production from biomass gasification. In their study, coefficient of 
determination (R2), Mean Absolute Error (MAE), and Root Mean Square Error (MSE) are used 
to compare those models, and LR outperformed. Monroy and et al. [17] implemented Support 
Vector Machine (SVM) to predict light intensity using both experimental and simulated data for 
batch hydrogen production. Whiteman and Kana [18] proposed to use Artificial Neural Network 
(ANN) to find the relationships between process inputs for fermentative biohydrogen production, 
and their results show high accuracy in modeling the relationships. 
 
Linear Regression (LR) 
 
Among the various methods above, Linear Regression (LR) is the simplest and most common 
statistical technique for prediction modeling. LR utilizes a given dataset of independent variables 
with corresponding dependent variables to provide the linear regression equation. LR finds out 
the coefficient for each independent variable, which induces the least residual error (i.e., the 



 
 

difference between dependent variable value and predicted value). The hypothesis function of 
ML LR with multiple variables is shown in Eq. 1 and the cost function for the parameter vector θ 
in Rn+1 is in Eq. 2 where 𝜃̅𝜃 is the coefficient vector, xi are the variables, m is the number of 
samples or data, and y is a target value. 

 
ℎ𝜃𝜃(𝑥𝑥) = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + 𝜃𝜃3𝑥𝑥3 + ⋯+ 𝜃𝜃𝑛𝑛𝑥𝑥𝑛𝑛     Eq. 1 
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Linear Regression in ML uses a gradient descent technique to find the coefficient vector, 𝜃̅𝜃, 
which minimizes cost function, J(θ ). Ordinary Least Squares (OLS) LR model is a type of linear 
least-squares method to estimate unknown parameters, coefficient vector, of linear regression 
equation in Eq. 1, which minimizes the cost function, J(θ ), in Eq. 2. In multiple variable 
problems in LR, multicollinearity has to be considered, which indicates the existence of near-
linear relationships among the independent variables. When multicollinearity exists among the 
independent variable dataset, the prediction of OLS LR may be unbiased, but prediction variance 
would be large, and the predicted value would not be a true value. To reduce this type of error, a 
degree of bias should be added to the regression estimates. Ridge and Lasso are two common 
regularized LR by adding a penalty to the cost function. Ridge LR adds penalty equivalent to the 
sum of the square of coefficients and Lasso LR adds sum of the absolute value of coefficients to 
the cost function. Eq. 3 and Eq. 4 show the cost functions of Ridge and Lasso, respectively, 
where p is the number of independent variables and a is a regularization parameter. When a is 
zero, the cost function is equivalent to the OLS LR model. With larger value, the model 
penalizes the coefficients more and reduces the complexity and multicollinearity. 
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Lasso is selected in this study since it identifies and utilizes the more related features for the 
prediction.  
 
Support Vector Regression (SVR) 
  
Support Vector Machine (SVM) can also be used for regression and Support Vector Regression 
(SVR) uses the same basic principles with few differences where it finds the regression function 
as flat as possible with low prediction error [19]. For a given dataset of independent variables, 
SVR finds the linear function of Eq. 5 that all values of the dependent variable are within a given 
tolerance.  
 

𝑦𝑦 = 𝑤𝑤𝑤𝑤 + 𝑏𝑏      Eq. 5 
 
Given a function, SVR seeks for small w to make Eq. 5 flat. In other words, SVR tries to find the 
minimum w, which satisfies all data points that are close to the leaner function with a variation 
of 𝜀𝜀. This problem can be formulated as Eq. 6 and Eq. 7 for I = 1, …, n. 
 



 
 

 
minimize   1

2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)𝑁𝑁

𝑖𝑖=1     Eq. 6 
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𝑤𝑤𝑥𝑥𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗

𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖∗ > 0
     Eq. 7 

 
In the formulation, SVR utilizes C for the trade-off between the flatness of function and the 
number of deviations larger than tolerance, 𝜀𝜀. However, SVR described above only applies to 
linear dataset. For the non-linear dataset, SVR uses a kernel function that transforms the data into 
a higher dimensional feature space, which transforms non-linear dataset to the linear form of the 
dataset in order to apply linear separation. The optimization model for non-linear SVR can be 
formulated in Eq. 8 where 𝛼𝛼𝑖𝑖 and 𝛼𝛼𝑖𝑖∗ are Lagrange multipliers and K(xi, x) is the Kernel. 
  

𝑦𝑦 = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) ∙ 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏𝑁𝑁
𝑖𝑖=1     Eq. 8 

 
One of the most commonly used kernel functions is Radial Basis Function (RBF) and it is shown 
in Eq. 9, where 𝛾𝛾 is a free parameter.  
 

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛾𝛾‖𝑥𝑥 − 𝑥𝑥′‖2)      Eq. 9 
 

The optimization parameters of SVR (RBF) are C and 𝛾𝛾, which should be selected carefully. 
 
K-Nearest Neighbor Regression (KNN) 
 
KNN (K-Nearest Neighbor) is also a supervised learning algorithm. Unlike other methods, KNN 
simply uses a training dataset to predict the result based on the outputs of nearest neighbors 
without generalizing the model. As KNN is known as instance-based or lazy learning, it finds the 
average of the values from k nearest neighbors. The weights are given based on the distance, 
Euclidean or Hamming. Euclidean distance is generally used for continuous values, while 
Hamming distance is used for discrete values. The nearer neighbor contributes more (more 
weight) than the others. The k value should be determined carefully. The smaller k results in 
higher variance or less stable results, while the larger k results in higher bias or less precise 
results. In general, adaptive method, heuristics, or cross-validation is used to select proper k 
value.  
 
3. Modeling and results 
 
Three ML models are used in this study to forecast the drought index, and the results are 
compared in this section. Before modeling the selected ML methods, data needs to be cleaned. 
The following discusses the data preparation followed by the modeling process with the results. 
 
Evaluation of model  
 
The data used in this study includes a set of seasonal weather data to compute the Palmer 
Drought Severity Index (PDSI), which includes precipitation, maximum temperature, and 



 
 

minimum temperature collected by the National Oceanic and Atmospheric Administration 
(NOAA) Climate Prediction Center (CPC) for 122 years from 1895 to 2017. Since there is no 
direct correlation between the data collected from different locations, this study classifies the 
data by area for modeling. For the best result, this study normalizes the PDSI into the range of 1 
to 3 for wet, normal, and drought. The study also compares the models with different input 
features. The basic input feature includes precipitation, maximum temperature, and minimum 
temperature. The study then adds month as the fourth input feature and year as the fifth input 
feature, respectively.  
 
In modeling, Lasso Linear Regression (Lasso), SVR (RBF), and KNN algorithms are 
implemented in Python to predict the PDSI and compared it to measure its performance. Hyper-
parameters should be carefully selected for the best fitting in each model.  This study uses a grid 
search to find those hyper-parameters. Table 1 shows the selected hyper-parameters of each 
model. Alpha value of 10-6 in Lasso, Cost of 1 and gamma of 8 in SVR, and the number of 
neighbors of 8 in KNN for all three different numbers of feature testing. 
 

Table 1. Hyper-parameters 
 Lass SVR KNN 

Hyper-
parameters α = 10-6 cost = 1 

gamma = 8 k = 8 

 
Once the hyper-parameters are selected, each model is validated to avoid the under and 
overfitting problem. The validation process splits the data into three folds of the dataset, training, 
testing, and validation datasets. The training dataset is used to train the model, and the test 
dataset is to test the trained model. The validation dataset is to apply the trained model to 
validate the testing procedure result. The purpose of validation ensures to resolve the overfitting 
problem. However, a single validation process does not guarantee to resolve such a problem. 
Therefore, K-fold cross-validation is generally utilized for the ML model validation. K-fold 
cross-validation randomly splits the dataset into K mutually exclusive groups and evaluates the 
model for K times. Each evaluation, K-1 group of datasets are used for the training, and one 
group is used for testing. A different group is chosen for the testing dataset for each evaluation. 
The evaluation score is calculated for each validation and averaged to evaluate the performance 
of the model. 10-fold cross-validation is used in this study. Root Mean Square Error (RMSE) is 
then used to compare the performance of each model in this study, which is determined by the 
square root of the sum of the difference between target and prediction values as shown in Eq. 10, 
where yi is a target and pi is a prediction value.  
 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑(𝑦𝑦𝑖𝑖 − 𝑝𝑝𝑖𝑖)2     Eq. 10 

 
 
Once the model is trained, this study computes RMSE using both training and testing dataset for 
each K. Then mean RMSE from 10-Fold cross-validation is shown in Table 2.  
 

Table 2. Root Mean Square Errors  



 
 

 3 features 4 features 5 features 
Training Testing Training Testing Training Testing 

Lasso 0.3133 0.3153 0.3122 0.3127 0.3110 0.3117 

SVR 0.2970 0.3077 0.2747 0.2990 0.2322 0.3145 

KNN 0.2818 0.3194 0.2718 0.3111 0.2768 0.3149 

 
The RMSE from the training dataset indicates how close the model fits the training dataset, while 
the one from testing shows how good the model predicts. High training RMSE is an indication of 
underfitting, while low training RMSE with high testing RMSE is happening for overfitting. 
Therefore, the lower in both training and testing RMSE, the better is fitting model. Both RMSE 
values are compared with the number of input features in Figures 1 and 2.   
 

 
Figure 1. RMSE of training dataset 

 



 
 

 
Figure 2. RMSE of testing dataset 

 
Figure 1 indicates that the model fitting is getting better as the number of input feature increases 
for both Lasso and SVR algorithms. There is no significant difference in the KNN algorithm. 
The SVR algorithm shows significantly better fitting to the training dataset with the increment of 
the number of input features. However, the RMSE of the testing dataset, as in Figure 2, shows 
somewhat different results. The Lasso algorithm shows gradual prediction improvement as the 
number of input features increases. For both the KNN and SVR algorithms, the prediction error 
is lower with the 4-input feature option. The SVR algorithm shows the highest prediction error 
with a 5-input feature option. Since the Lasso algorithm has the capability of removing non-
related features, continuously both RMSEs are decreasing. However, for the KNN and SVR 
algorithms, it appears that overfitting occurs when the number of input features increases. 
Therefore, the number of input features does not harm the Lasso model, but it is the matter with 
the SVR or KNN model. Therefore, the number of input features should be carefully selected for 
both the KNN and SVR algorithms to avoid overfitting. Overall, the SVR algorithm shows the 
best prediction result with the 4-input feature option.  
 
4. Conclusions 
 
This study proposes a Machine Learning (ML) model for forecasting drought indices. This study 
used a regression analysis model in Lasso, which is normalized to improve prediction accuracy. 
The proposed model used the National Oceanic and Atmospheric Administration (NOAA) 
Climate Prediction Center (CPC) seasonal data to compute the Palmer Drought Severity Index 
(PDSI). The accuracy of the model was validated using the historical records of drought indices 
and available seasonal temperature and precipitation data provided by the NOAA CPC. The 
results of the forecasts produced by this model were validated by the observed drought indices. 
The mean error rate and root mean square error (RMSE) indicated that the accuracy of the 
forecast at stations is best when the SVR algorithm was used with the 4-input feature option.  
 
5. Implementation in classroom 
 



 
 

The proposed artificial intelligence (AI) model can be used in various classroom and laboratory 
settings with machine learning software packages for general engineering studies thanks mainly 
to its versatility in modeling the procedures of forecasting any future events based on big data. It 
would be particularly beneficial to a student who attempts to learn how to predict future weather 
events for planning purposes in the AI approach. In a traditional approach, Ordinary Least 
Square (OLS) regression is one of the methods generally used for the prediction. By using the 
machine learning approach proposed in this paper, a student will learn the state-of-art machine 
learning approach and compare it with the traditional regression method. Additionally, students 
will learn how to manage the data set for better prediction as well as the key factors that may 
affect the overall forecasts. 
 
As far as the application of the proposed model in a classroom setting, one can use the model for 
either two 4-hr labs or a one-semester project, which includes data collection, modeling, and 
validation. For the lab instruction, the instructor can guide through the data collection and 
managing procedures as well as the primary data set for the region of interest during the first lab. 
The instructor can then teach how to use open-source functions and their functionality for 
modeling. In the second lab, the instructor can introduce how to train and validate the machine 
learning models, followed by the instruction of how to run the model for forecasting future 
events. For a semester project, one can use the model for a group project with 3-4 students. The 
instructor can provide minimum information only to help with the setup, available data, and 
validation procedures. It is ideal then to let the student group perform modeling and forecasting 
on their own and compare the results with other groups. 
 
For a specific classroom example, one can use the proposed model in undergraduate civil 
engineering courses where climate variability is an important factor. In the undergraduate civil 
engineering curriculum, courses such as Engineering Hydrology and Water and Waste Systems 
cover water resources subject areas that discuss basic rainfall-watershed response principles and 
appropriate response system design, respectively. Accreditation Board for Engineering and 
Technology, Inc (ABET) requires Student Learning Outcome 2 relevant to the authors’ presented 
work. The Student Learning Outcome 2 reads an ability to apply engineering design to produce 
solutions that meet specified needs with consideration of public health, safety, and welfare, as 
well as global, cultural, social, environmental, and economic factors (https://www.abet.org/ 
accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2019-
2020/#GC3, visited Apr. 27, 2020). The application of the proposed model will serve to 
strengthen the student learning outcome by promoting a new thought process considering the 
climate variability in water resources systems.  
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